A Transformer-Based Multimodal Model for Urban–Rural Fringe Identification

北京 计算机科学 鉴定(生物学) 地理 城市化 遥感 中国 经济增长 植物 生物 经济 考古
作者
Furong Jia,Quanhua Dong,Zhou Huang,Xiaojian Chen,Yi Wang,Peng Xia,Y.C. Guo,Ruixian Ma,Fan Zhang,Yu Liu
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 15041-15051 被引量:1
标识
DOI:10.1109/jstars.2024.3439429
摘要

As the frontier of urbanization, urban-rural fringes (URFs) transitionally connect urban construction regions to the rural hinterland, and its identification is significant for the study of urbanization-related socioeconomic changes and human dynamics. Previous research on URF identification has predominantly relied on remote sensing data, which often provides a uniform overhead perspective with limited spatial resolution. As an additional data source, Street View Images (SVIs) offer a valuable human-related perspective, efficiently capturing intricate transitions from urban to rural areas. However, the abundant visual information offered by SVIs has often been overlooked and multi-modal techniques have seldom been explored to integrate multi-source data for delineating URFs. To address this gap, this study proposes a Transformed-based multi-modal methodology for identifying URFs, which includes a street view panorama classifier and a remote sensing classification model. In the study area of Beijing, the experimental results indicate that an URF with a total area of 731.24 km 2 surrounds urban cores, primarily located between the fourth and sixth ring roads. The effectiveness of the proposed method is demonstrated through comparative experiments with traditional URF identification methods. Additionally, a series of ablation studies demonstrate the efficacy of incorporating multi-source data. Based on the delineated URFs in Beijing, this research introduced Points of Interest (POI) data and commuting data to analyze the socioeconomic characteristics of URFs. The findings indicate that URFs are characterized by longer commuting distances and less diverse restaurant consumption patterns compared to more urbanized regions. This study enables the accurate identification of URFs through the Transform-based multi-modal approach integrating street view images. Furthermore, it provides a humancentric comprehension of URFs, which is essential for informing strategies of urban planning and development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助Tina采纳,获得10
刚刚
刚刚
ZM发布了新的文献求助10
刚刚
长生的落叶完成签到,获得积分10
1秒前
1秒前
魔法翼龙完成签到,获得积分10
1秒前
2秒前
2秒前
量子星尘发布了新的文献求助10
3秒前
Hello应助LKT采纳,获得10
3秒前
fc完成签到,获得积分20
3秒前
寒冷忆山完成签到,获得积分10
3秒前
yy发布了新的文献求助10
3秒前
丫丫发布了新的文献求助10
4秒前
吾本愚钝发布了新的文献求助10
4秒前
脑洞疼应助多久上课采纳,获得10
5秒前
ysd完成签到,获得积分10
5秒前
无限的耷发布了新的文献求助10
5秒前
瞿娜完成签到,获得积分20
5秒前
蛇從革应助科研通管家采纳,获得50
6秒前
Akim应助科研通管家采纳,获得10
6秒前
Akim应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
司空豁应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
云淡关注了科研通微信公众号
6秒前
英俊的铭应助科研通管家采纳,获得10
6秒前
子车茗应助科研通管家采纳,获得20
6秒前
popvich应助科研通管家采纳,获得20
7秒前
7秒前
GYR应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
司空豁应助科研通管家采纳,获得10
7秒前
桐桐应助科研通管家采纳,获得10
7秒前
可爱凡波完成签到,获得积分10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4618617
求助须知:如何正确求助?哪些是违规求助? 4020740
关于积分的说明 12446477
捐赠科研通 3704472
什么是DOI,文献DOI怎么找? 2042916
邀请新用户注册赠送积分活动 1075296
科研通“疑难数据库(出版商)”最低求助积分说明 958657