ALFREDO: Active Learning with FeatuRe disEntangelement and DOmain adaptation for medical image classification

计算机科学 人工智能 判别式 模式识别(心理学) 稳健性(进化) 分割 域适应 特征(语言学) 领域(数学分析) 机器学习 试验数据 上下文图像分类 适应(眼睛) 特征提取 图像(数学) 分类器(UML) 数学 语言学 哲学 生物化学 化学 基因 程序设计语言 数学分析 物理 光学
作者
Dwarikanath Mahapatra,Ruwan Tennakoon,Yasmeen George,Sudipta Roy,Behzad Bozorgtabar,Zongyuan Ge,Mauricio Reyes
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:97: 103261-103261
标识
DOI:10.1016/j.media.2024.103261
摘要

State-of-the-art deep learning models often fail to generalize in the presence of distribution shifts between training (source) data and test (target) data. Domain adaptation methods are designed to address this issue using labeled samples (supervised domain adaptation) or unlabeled samples (unsupervised domain adaptation). Active learning is a method to select informative samples to obtain maximum performance from minimum annotations. Selecting informative target domain samples can improve model performance and robustness, and reduce data demands. This paper proposes a novel pipeline called ALFREDO (Active Learning with FeatuRe disEntangelement and DOmain adaptation) that performs active learning under domain shift. We propose a novel feature disentanglement approach to decompose image features into domain specific and task specific components. Domain specific components refer to those features that provide source specific information, e.g., scanners, vendors or hospitals. Task specific components are discriminative features for classification, segmentation or other tasks. Thereafter we define multiple novel cost functions that identify informative samples under domain shift. We test our proposed method for medical image classification using one histopathology dataset and two chest X-ray datasets. Experiments show our method achieves state-of-the-art results compared to other domain adaptation methods, as well as state of the art active domain adaptation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助勾勾1991采纳,获得10
2秒前
hhq完成签到,获得积分20
2秒前
搜集达人应助酚酞v采纳,获得10
3秒前
香蕉觅云应助ws123采纳,获得10
3秒前
XYJ发布了新的文献求助10
4秒前
科研通AI5应助高兴可乐采纳,获得10
4秒前
感动的秀发完成签到 ,获得积分10
5秒前
6秒前
7秒前
爆米花应助skywet采纳,获得10
7秒前
Besty完成签到 ,获得积分10
9秒前
9秒前
9秒前
ATOM发布了新的文献求助10
10秒前
热心的冷松完成签到,获得积分10
12秒前
Bioyanggu发布了新的文献求助30
12秒前
碧蓝亦玉完成签到 ,获得积分10
14秒前
我是老大应助ATOM采纳,获得10
16秒前
Timon完成签到,获得积分10
16秒前
linuo完成签到,获得积分10
16秒前
DrZ发布了新的文献求助10
17秒前
ssc完成签到,获得积分10
20秒前
脑洞疼应助闫132采纳,获得10
22秒前
Bioyanggu完成签到,获得积分20
22秒前
23秒前
顾矜应助乱武采纳,获得10
23秒前
丘比特应助郑蒸日上采纳,获得10
26秒前
凡可可完成签到,获得积分10
26秒前
26秒前
打打应助大胆砖头采纳,获得10
28秒前
skywet发布了新的文献求助10
29秒前
大模型应助暮夏子采纳,获得10
29秒前
30秒前
hl发布了新的文献求助10
31秒前
31秒前
31秒前
乱武发布了新的文献求助10
35秒前
36秒前
38秒前
38秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789448
求助须知:如何正确求助?哪些是违规求助? 3334410
关于积分的说明 10270135
捐赠科研通 3050885
什么是DOI,文献DOI怎么找? 1674216
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732