Mechanical Quantities Prediction of Metal Cutting by Machine Learning and Simulation Data

非线性系统 计算机科学 过程(计算) 任务(项目管理) 感知器 多层感知器 人工神经网络 人工智能 机器学习 算法 工程类 量子力学 操作系统 物理 系统工程
作者
Yijin Cheng,Yan Li,Yu Cong,Pierre Joli,Zhi‐Qiang Feng
出处
期刊:International Journal of Applied Mechanics [World Scientific]
卷期号:16 (07)
标识
DOI:10.1142/s175882512450087x
摘要

Metal cutting is an important process in industrial manufacturing. Using the mechanical quantities of metal cutting to optimize process design is helpful to improve productivity. However, it is expensive to obtain these quantities due to the complexity of the cutting process, including material nonlinearity, geometric nonlinearity, state nonlinearity and their interactions. In this paper, a prediction model is constructed by combining machine learning (ML) and simulation data to quickly acquire multi-difficult-to-obtain metal cutting mechanical quantities to solve this problem. First, Adaptive Smoothed Particle Hydrodynamics (ASPH) is used to generate a simulation dataset of 2000 metal cutting cases. Based on the simulation data, six machine learning (ML) methods are employed to establish two prediction models, single-task learning and multi-task learning, to predict the mechanical quantities of metal cutting. The experimental results demonstrate that the ML method can predict abundant reference data efficiently after understanding the relationship between simulation parameters and mechanical quantities from simulation data, which is expected to replace some similar and repetitive simulation work. The Multilayer Perceptron (MLP) model under the multi-task setting provides the best prediction performance, fastest prediction time efficiency, and stable model behavior. Additionally, input erasure experiments reveal that the prediction of maximum equivalent plastic strain is significantly affected by particle spacing, and cutting speed plays a vital role in predicting maximum velocity. This work highlights the promotion of the data-driven ML method in quickly obtaining abundant reference data for the metal cutting process, and provides an auxiliary means for process optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
杨自强完成签到,获得积分10
刚刚
娇娇大王完成签到,获得积分10
1秒前
MRJJJJ完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
4秒前
Hello应助bukk采纳,获得10
5秒前
5秒前
无情的土豆完成签到,获得积分10
9秒前
10秒前
SciGPT应助KevenDing采纳,获得10
10秒前
李健应助小明同学采纳,获得10
11秒前
红枫没有微雨怜完成签到 ,获得积分10
14秒前
路过蜻蜓完成签到,获得积分10
15秒前
17秒前
18秒前
田様应助小王子采纳,获得10
20秒前
怡然可乐发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
22秒前
24秒前
26秒前
天天快乐应助神途采纳,获得10
26秒前
bkagyin应助科研通管家采纳,获得30
27秒前
赘婿应助科研通管家采纳,获得10
27秒前
华仔应助科研通管家采纳,获得10
27秒前
NN应助科研通管家采纳,获得10
27秒前
期期应助科研通管家采纳,获得10
27秒前
TARTALIA应助科研通管家采纳,获得10
27秒前
斯文败类应助科研通管家采纳,获得30
27秒前
28秒前
期期应助科研通管家采纳,获得10
28秒前
hjyylab应助科研通管家采纳,获得10
28秒前
CodeCraft应助科研通管家采纳,获得20
28秒前
Owen应助科研通管家采纳,获得30
28秒前
5430完成签到,获得积分10
30秒前
乐观的饭饭完成签到 ,获得积分10
31秒前
充电宝应助独特翎采纳,获得10
31秒前
法克西瓜汁完成签到,获得积分10
32秒前
34秒前
35秒前
QIU完成签到 ,获得积分10
35秒前
way完成签到,获得积分10
36秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Building Quantum Computers 1078
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3862686
求助须知:如何正确求助?哪些是违规求助? 3405200
关于积分的说明 10643794
捐赠科研通 3128689
什么是DOI,文献DOI怎么找? 1725372
邀请新用户注册赠送积分活动 831042
科研通“疑难数据库(出版商)”最低求助积分说明 779516