Combining Radiomics and Autoencoders to Distinguish Benign and Malignant Breast Tumors on US Images

医学 无线电技术 乳房成像 放射科 双雷达 乳腺肿瘤 人工智能 乳腺癌 乳腺摄影术 癌症 内科学 计算机科学
作者
Zuzanna Magnuska,Rijo Roy,Moritz Palmowski,Matthias Kohlen,B. Sophia Winkler,Tatjana Pfeil,Peter Boor,Volkmar Schulz,Katja Krauss,Elmar Stickeler,Fabian Kießling
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:7
标识
DOI:10.1148/radiol.232554
摘要

Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions. Materials and Methods A total of 1619 B-mode US images of breast tumors were retrospectively analyzed between April 2018 and January 2024. nnU-Net was trained for lesion segmentation. Features were extracted from tumor segments, bounding boxes, and whole images using either classic radiomics, autoencoder, or both. Feature selection was performed to generate radiomics signatures, which were used to train machine learning algorithms for tumor categorization. Models were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity and were statistically compared with histopathologically or follow-up-confirmed diagnosis. Results The model was developed on 1191 (mean age, 61 years ± 14 [SD]) female patients and externally validated on 50 (mean age, 55 years ± 15]). The development data set was divided into two parts: testing and training lesion segmentation (419 and 179 examinations) and lesion categorization (503 and 90 examinations). nnU-Net demonstrated precision and reproducibility in lesion segmentation in test set of data set 1 (median Dice score [DS]: 0.90 [IQR, 0.84-0.93];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Roach发布了新的文献求助80
刚刚
yimei发布了新的文献求助10
1秒前
Akim应助阳光的凌雪采纳,获得10
1秒前
爆米花应助研友_LBR9gL采纳,获得10
1秒前
8R60d8应助ALICE采纳,获得10
3秒前
3秒前
派大星完成签到,获得积分10
3秒前
xiongyh10完成签到,获得积分10
4秒前
丘比特应助时不我待C采纳,获得10
5秒前
打打应助漂亮访云采纳,获得10
5秒前
6秒前
yydragen应助Cindy采纳,获得50
6秒前
Robinli应助高挑的雨雪采纳,获得10
6秒前
7秒前
yar应助叶公子采纳,获得10
7秒前
笨笨发布了新的文献求助10
8秒前
9秒前
amberzyc应助TCMning采纳,获得10
10秒前
张女士发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
机灵盼芙发布了新的文献求助10
13秒前
nuomi发布了新的文献求助20
14秒前
深情安青应助心灵美明杰采纳,获得10
14秒前
小鱼完成签到 ,获得积分10
16秒前
Duke_ethan完成签到,获得积分10
16秒前
hejunhui发布了新的文献求助10
16秒前
18秒前
Umar发布了新的文献求助10
18秒前
19秒前
CC发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
草原牧牛郎完成签到,获得积分10
21秒前
天天快乐应助Lion采纳,获得10
21秒前
千互发布了新的文献求助10
23秒前
王伟军发布了新的文献求助30
24秒前
高挑的雨雪给高挑的雨雪的求助进行了留言
24秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
求 5G-Advanced NTN空天地一体化技术 pdf版 500
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4066053
求助须知:如何正确求助?哪些是违规求助? 3604736
关于积分的说明 11448246
捐赠科研通 3327101
什么是DOI,文献DOI怎么找? 1829030
邀请新用户注册赠送积分活动 899118
科研通“疑难数据库(出版商)”最低求助积分说明 819449