Combining Radiomics and Autoencoders to Distinguish Benign and Malignant Breast Tumors on US Images

医学 无线电技术 乳房成像 放射科 双雷达 乳腺肿瘤 人工智能 乳腺癌 乳腺摄影术 癌症 内科学 计算机科学
作者
Zuzanna Magnuska,Rijo Roy,Moritz Palmowski,Matthias Kohlen,B. Sophia Winkler,Tatjana Pfeil,Peter Boor,Volkmar Schulz,Katja Krauss,Elmar Stickeler,Fabian Kießling
出处
期刊:Radiology [Radiological Society of North America]
卷期号:312 (3) 被引量:4
标识
DOI:10.1148/radiol.232554
摘要

Background US is clinically established for breast imaging, but its diagnostic performance depends on operator experience. Computer-assisted (real-time) image analysis may help in overcoming this limitation. Purpose To develop precise real-time-capable US-based breast tumor categorization by combining classic radiomics and autoencoder-based features from automatically localized lesions. Materials and Methods A total of 1619 B-mode US images of breast tumors were retrospectively analyzed between April 2018 and January 2024. nnU-Net was trained for lesion segmentation. Features were extracted from tumor segments, bounding boxes, and whole images using either classic radiomics, autoencoder, or both. Feature selection was performed to generate radiomics signatures, which were used to train machine learning algorithms for tumor categorization. Models were evaluated using the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity and were statistically compared with histopathologically or follow-up-confirmed diagnosis. Results The model was developed on 1191 (mean age, 61 years ± 14 [SD]) female patients and externally validated on 50 (mean age, 55 years ± 15]). The development data set was divided into two parts: testing and training lesion segmentation (419 and 179 examinations) and lesion categorization (503 and 90 examinations). nnU-Net demonstrated precision and reproducibility in lesion segmentation in test set of data set 1 (median Dice score [DS]: 0.90 [IQR, 0.84-0.93];
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tongke完成签到,获得积分10
1秒前
科研通AI5应助任性雨安采纳,获得10
1秒前
CipherSage应助筱筱璇采纳,获得10
2秒前
cdercder应助黄金矿工采纳,获得10
2秒前
69岁扶墙对抗完成签到,获得积分10
3秒前
4秒前
CrsCrsCrs完成签到,获得积分10
4秒前
ding应助sisi采纳,获得10
5秒前
PANYIAO完成签到,获得积分10
5秒前
FashionBoy应助CCC采纳,获得10
7秒前
8秒前
jenningseastera应助xjcy采纳,获得10
8秒前
DING完成签到,获得积分10
8秒前
9秒前
慕青应助盼盼采纳,获得10
12秒前
慕青应助马儿饿了要吃草采纳,获得10
13秒前
14秒前
14秒前
15秒前
长情立诚完成签到,获得积分10
16秒前
丘比特应助shijiu采纳,获得10
16秒前
思源应助张涛采纳,获得10
16秒前
黄金矿工完成签到,获得积分10
17秒前
我是老大应助豆豆采纳,获得10
17秒前
DAI正杰发布了新的文献求助10
18秒前
19秒前
无花果应助111采纳,获得10
19秒前
垃圾车发布了新的文献求助10
20秒前
20秒前
¥#¥-11完成签到,获得积分10
21秒前
斯文败类应助喜欢秋天xx_y采纳,获得10
22秒前
22秒前
23秒前
david完成签到 ,获得积分10
23秒前
盼盼发布了新的文献求助10
23秒前
开心的萝莉完成签到,获得积分10
23秒前
wjswift完成签到,获得积分10
23秒前
24秒前
小闵完成签到,获得积分10
24秒前
CipherSage应助别止采纳,获得10
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798743
求助须知:如何正确求助?哪些是违规求助? 3344441
关于积分的说明 10320116
捐赠科研通 3060952
什么是DOI,文献DOI怎么找? 1679908
邀请新用户注册赠送积分活动 806780
科研通“疑难数据库(出版商)”最低求助积分说明 763386