Model Attention Expansion for Few-Shot Class-Incremental Learning

计算机科学 人工智能 机器学习 班级(哲学) 判别式 嵌入
作者
Xuan Wang,Zhong Ji,Yunlong Yu,Yanwei Pang,Jungong Han
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 4419-4431 被引量:1
标识
DOI:10.1109/tip.2024.3434475
摘要

Few-Shot Class-Incremental Learning (FSCIL) aims at incrementally learning new knowledge from limited training examples without forgetting previous knowledge. However, we observe that existing methods face a challenge known as supervision collapse, where the model disproportionately emphasizes class-specific features of base classes at the detriment of novel class representations, leading to restricted cognitive capabilities. To alleviate this issue, we propose a new framework, Model aTtention Expansion for Few-Shot Class-Incremental Learning (MTE-FSCIL), aimed at expanding the model attention fields to improve transferability without compromising the discriminative capability for base classes. Specifically, the framework adopts a dual-stage training strategy, comprising pre-training and meta-training stages. In the pre-training stage, we present a new regularization technique, named the Reserver (RS) loss, to expand the global perception and reduce over-reliance on class-specific features by amplifying feature map activations. During the meta-training stage, we introduce the Repeller (RP) loss, a novel pair-based loss that promotes variation in representations and improves the model's recognition of sample uniqueness by scattering intra-class samples within the embedding space. Furthermore, we propose a Transformational Adaptation (TA) strategy to enable continuous incorporation of new knowledge from downstream tasks, thus facilitating cross-task knowledge transfer. Extensive experimental results on mini-ImageNet, CIFAR100, and CUB200 datasets demonstrate that our proposed framework consistently outperforms the state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanghua完成签到,获得积分10
刚刚
刚刚
魔幻的雪卉完成签到,获得积分10
刚刚
动听的笑南完成签到,获得积分10
刚刚
大成子完成签到,获得积分10
1秒前
诸天蓉发布了新的文献求助30
1秒前
1秒前
可夫司机发布了新的文献求助10
2秒前
姐姐发布了新的文献求助10
2秒前
Amy完成签到,获得积分10
3秒前
桐桐应助may采纳,获得10
3秒前
brd完成签到,获得积分10
3秒前
岁月如歌完成签到,获得积分0
3秒前
wxh完成签到,获得积分10
3秒前
YY发布了新的文献求助10
3秒前
ZJT发布了新的文献求助30
4秒前
尊敬的思雁完成签到,获得积分10
4秒前
922完成签到,获得积分20
4秒前
5秒前
Drew11发布了新的文献求助10
5秒前
诚心的剑完成签到,获得积分10
5秒前
仿真小学生应助灰灰采纳,获得30
5秒前
不语完成签到,获得积分10
6秒前
海阔云高完成签到,获得积分10
6秒前
无辜念文完成签到,获得积分10
7秒前
7秒前
科研小白完成签到,获得积分20
7秒前
111完成签到,获得积分20
7秒前
卡卡西完成签到,获得积分10
8秒前
小熊完成签到,获得积分10
8秒前
mudiboyang完成签到,获得积分10
8秒前
哭泣的翠丝完成签到,获得积分10
8秒前
六点完成签到,获得积分10
8秒前
大方虎完成签到 ,获得积分10
9秒前
9秒前
SciGPT应助干净盼山采纳,获得10
10秒前
姐姐完成签到,获得积分20
10秒前
大模型应助小陈同学采纳,获得10
11秒前
11秒前
谦让香菱完成签到,获得积分10
11秒前
高分求助中
ISCN 2024 - An International System for Human Cytogenomic Nomenclature (2024) 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788571
求助须知:如何正确求助?哪些是违规求助? 3333821
关于积分的说明 10264588
捐赠科研通 3049861
什么是DOI,文献DOI怎么找? 1673719
邀请新用户注册赠送积分活动 802186
科研通“疑难数据库(出版商)”最低求助积分说明 760549