Knowledge Distillation and Contrastive Learning for Detecting Visible-Infrared Transmission Lines Using Separated Stagger Registration Network

人工智能 计算机科学 过度拟合 机器学习 深度学习 噪音(视频) 算法 人工神经网络 图像(数学)
作者
Weixing Zhou,Yusen Wang,Xiaohong Qian
出处
期刊:IEEE Transactions on Circuits and Systems I-regular Papers [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tcsi.2024.3521933
摘要

Multimodal transmission-line detection (TLD) and other vision-related tasks in smart grids have garnered increasing attention due to advances in deep-learning technologies and escalating need for reliable power supplies. However, current TLD methodologies encounter several limitations. First, complex weather conditions often introduce substantial background noise, resulting in inaccurate object detection. Second, high parameter counts of extant models impede their deployment in real-world applications. Third, insufficient data samples results in overfitting and instability. To address these challenges, we proposed a separated stagger registration network (SSRNet-S $^\ast)$ , augmented with knowledge distillation (KD) and contrastive learning, specifically designed for RGB-T TLD. This method integrates a separated stagger registration mechanism into the fusion module to investigate relationships between cross-modal features. This approach enhances feature representation and effectively reduces background noise. Additionally, we devised a joint training framework incorporating KD and contrastive learning and proposed a hierarchical distillation strategy to compress the model while mitigating the impact of limited data samples. Complementary features were captured at various stages of SSRNet-S $^\ast$ by employing three levels of distillation. Extensive experiments on a TLD dataset demonstrated that both SSRNet-T and SSRNet-S $^\ast$ (with KD) outperform state-of-the-art methods. When using P2T-Large and P2T-Tiny as backbone networks in SSRNet-T and SSRNet-S $^\ast$ , respectively, the number of parameters decreased from 68.37M to 15.06M, and the computational floating-point operations decreased from 26.99G to 3.01G. Our code and results are available at https://github.com/WangYuSenn/SSRNet-KD.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jack发布了新的文献求助10
刚刚
街上的纸屑完成签到 ,获得积分10
1秒前
6秒前
coolkid应助hepotosis采纳,获得10
7秒前
Jack完成签到,获得积分10
8秒前
英俊的铭应助noamin采纳,获得10
9秒前
星点完成签到 ,获得积分10
9秒前
liufang发布了新的文献求助10
11秒前
兰格格完成签到,获得积分10
12秒前
atopos发布了新的文献求助10
12秒前
123456关注了科研通微信公众号
12秒前
12秒前
酷波er应助pl采纳,获得10
14秒前
14秒前
激昂的白凡完成签到,获得积分10
15秒前
hepotosis完成签到,获得积分10
16秒前
CC完成签到,获得积分10
16秒前
18秒前
18秒前
19秒前
开心绿柳完成签到,获得积分10
19秒前
一只虎子完成签到,获得积分10
20秒前
niuyaka发布了新的文献求助10
22秒前
快乐小猫咪完成签到,获得积分10
23秒前
Mrzhu应助JSM采纳,获得1000
23秒前
从容甜瓜完成签到 ,获得积分10
24秒前
jiemy完成签到,获得积分10
24秒前
丘比特应助无敌脉冲黄桃采纳,获得10
24秒前
小蘑菇应助Duke_ethan采纳,获得10
25秒前
博修发布了新的文献求助10
26秒前
123456发布了新的文献求助30
26秒前
27秒前
我是老大应助苞米公主采纳,获得10
28秒前
28秒前
29秒前
29秒前
兴奋的定帮应助zhiyuyu采纳,获得10
30秒前
咸鱼本鱼完成签到 ,获得积分10
32秒前
121212发布了新的文献求助10
32秒前
able发布了新的文献求助10
34秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3903585
求助须知:如何正确求助?哪些是违规求助? 3448379
关于积分的说明 10852833
捐赠科研通 3173828
什么是DOI,文献DOI怎么找? 1753572
邀请新用户注册赠送积分活动 847767
科研通“疑难数据库(出版商)”最低求助积分说明 790473