Recent advances of machine learning in the geographical origin traceability of food and agro‐products: A review

可追溯性 计算机科学 食品 可解释性 农业 跟踪(心理语言学) 过程(计算) 人工智能 地理 食品科学 化学 语言学 操作系统 软件工程 哲学 考古
作者
Jiali Li,Jianping Qian,Jinyong Chen,Luis Ruiz-García,Chen Dong,Qian Chen,Zihan Liu,Pengnan Xiao,Zhiyao Zhao
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:24 (1) 被引量:4
标识
DOI:10.1111/1541-4337.70082
摘要

Abstract The geographical origin traceability of food and agro‐products has been attracted worldwide. Especially with the rise of machine learning (ML) technology, it provides cutting‐edge solutions to erstwhile intractable issues to identify the origin of food and agro‐products. By utilizing advanced algorithms, ML can extract feature information of food and agro‐products that is closely related to origin and, more accurately, identify and trace their origins, which is of great significance to the entire food and agriculture industry. This paper provides a comprehensive overview of the state‐of‐the‐art applications of ML in the geographical origin traceability of food and agro‐products. First, commonly used ML methods are summarized. The paper then outlines the whole process of preparation for modeling, model training as well as model evaluation for building traceability models–based ML. Finally, recent applications of ML combined with different traceability techniques in the field of food and agro‐products are revisited. Although ML has made many achievements in solving the geographical origin traceability problem of food and agro‐products, it still has great development potential. For example, the application of ML is yet insufficient in the geographical origin traceability using DNA or computer vision techniques. The ability of ML to predict the geographical origin of food and agro‐products can be further improved, for example, by increasing model interpretability, incorporating data fusion strategies, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助xiaofan采纳,获得10
刚刚
文静的峻熙完成签到,获得积分10
1秒前
桐桐应助Docyongsun采纳,获得10
1秒前
宇文远锋完成签到,获得积分0
1秒前
李爱国应助非往采纳,获得10
2秒前
pipipeekapoo完成签到 ,获得积分10
2秒前
一园一木发布了新的文献求助10
2秒前
宁紫涵发布了新的文献求助10
2秒前
zzx发布了新的文献求助10
2秒前
2秒前
饺子完成签到,获得积分10
3秒前
缥缈的青旋完成签到,获得积分10
3秒前
城北徐公完成签到,获得积分10
3秒前
俏皮巧荷发布了新的文献求助10
3秒前
英俊的铭应助悦耳的乐松采纳,获得10
4秒前
星辰大海应助虚拟的含灵采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得20
5秒前
英姑应助科研通管家采纳,获得30
5秒前
5秒前
Jasper应助科研通管家采纳,获得10
5秒前
潘子完成签到,获得积分10
5秒前
高高应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
高高应助科研通管家采纳,获得10
6秒前
YY本Y应助科研通管家采纳,获得20
6秒前
zqfxc完成签到,获得积分10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
6秒前
搜集达人应助科研通管家采纳,获得10
6秒前
Owen应助11采纳,获得10
6秒前
张润琦完成签到 ,获得积分10
6秒前
SYLH应助科研通管家采纳,获得20
6秒前
打打应助科研通管家采纳,获得10
7秒前
圈圈应助科研通管家采纳,获得20
7秒前
SYLH应助科研通管家采纳,获得20
7秒前
田様应助科研通管家采纳,获得10
7秒前
lw777发布了新的文献求助10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4062243
求助须知:如何正确求助?哪些是违规求助? 3600990
关于积分的说明 11436072
捐赠科研通 3324206
什么是DOI,文献DOI怎么找? 1827628
邀请新用户注册赠送积分活动 898126
科研通“疑难数据库(出版商)”最低求助积分说明 818904