Recent advances of machine learning in the geographical origin traceability of food and agro‐products: A review

可追溯性 计算机科学 食品 可解释性 农业 跟踪(心理语言学) 过程(计算) 人工智能 地理 食品科学 化学 语言学 操作系统 软件工程 哲学 考古
作者
Jiali Li,Jianping Qian,Jinyong Chen,Luis Ruiz-García,Chen Dong,Qian Chen,Zihan Liu,Pengnan Xiao,Zhiyao Zhao
出处
期刊:Comprehensive Reviews in Food Science and Food Safety [Wiley]
卷期号:24 (1) 被引量:1
标识
DOI:10.1111/1541-4337.70082
摘要

Abstract The geographical origin traceability of food and agro‐products has been attracted worldwide. Especially with the rise of machine learning (ML) technology, it provides cutting‐edge solutions to erstwhile intractable issues to identify the origin of food and agro‐products. By utilizing advanced algorithms, ML can extract feature information of food and agro‐products that is closely related to origin and, more accurately, identify and trace their origins, which is of great significance to the entire food and agriculture industry. This paper provides a comprehensive overview of the state‐of‐the‐art applications of ML in the geographical origin traceability of food and agro‐products. First, commonly used ML methods are summarized. The paper then outlines the whole process of preparation for modeling, model training as well as model evaluation for building traceability models–based ML. Finally, recent applications of ML combined with different traceability techniques in the field of food and agro‐products are revisited. Although ML has made many achievements in solving the geographical origin traceability problem of food and agro‐products, it still has great development potential. For example, the application of ML is yet insufficient in the geographical origin traceability using DNA or computer vision techniques. The ability of ML to predict the geographical origin of food and agro‐products can be further improved, for example, by increasing model interpretability, incorporating data fusion strategies, and others.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
llh发布了新的文献求助10
1秒前
1秒前
4秒前
深情安青应助高圆圆采纳,获得10
4秒前
酷酷笑容完成签到,获得积分10
4秒前
张emo发布了新的文献求助10
7秒前
浅晨完成签到,获得积分10
8秒前
9秒前
酷酷的梦凡完成签到,获得积分10
10秒前
科研通AI5应助高兴的半芹采纳,获得10
10秒前
沉默的无施完成签到,获得积分10
11秒前
lizhiqian2024发布了新的文献求助10
12秒前
雪白的紫翠应助科研兄采纳,获得10
12秒前
热心市民应助yana采纳,获得20
14秒前
14秒前
15秒前
15秒前
xueyu完成签到,获得积分10
17秒前
17秒前
酷波er应助舟山第一食客采纳,获得10
18秒前
18秒前
bwx发布了新的文献求助30
19秒前
19秒前
YHY发布了新的文献求助10
19秒前
思源应助梅竹采纳,获得10
20秒前
蒋小亮发布了新的文献求助10
21秒前
dimple发布了新的文献求助10
22秒前
十七。发布了新的文献求助10
22秒前
22秒前
飞翔的企鹅完成签到,获得积分10
23秒前
LYDZ1完成签到,获得积分10
24秒前
Akim应助YHY采纳,获得10
25秒前
普照大地完成签到,获得积分10
26秒前
翎儿响叮当完成签到 ,获得积分10
27秒前
义气飞珍发布了新的文献求助10
27秒前
30秒前
30秒前
一一应助小章鱼采纳,获得10
31秒前
31秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3803515
求助须知:如何正确求助?哪些是违规求助? 3348433
关于积分的说明 10338424
捐赠科研通 3064449
什么是DOI,文献DOI怎么找? 1682577
邀请新用户注册赠送积分活动 808339
科研通“疑难数据库(出版商)”最低求助积分说明 764038