AI-driven design and optimization of nanoparticle-based drug delivery systems

药物输送 计算机科学 纳米颗粒 药品 纳米技术 材料科学 医学 药理学
作者
Devesh U. Kapoor,Jai Bharti Sharma,Sonu Gandhi,Bhupendra G. Prajapati,Kasitpong Thanawuth,Sontaya Limmatvapirat,Pornsak Sriamornsak
标识
DOI:10.69598/sehs.18.24010003
摘要

Nanoparticle-based drug delivery systems represent a transformative advancement in targeted therapeutics, providing meticulous drug delivery, enhanced bioavailability, and diminished side effects. However, designing nanoparticles (NPs) optimal for specific drugs and diseases remains a complex challenge. The advancements in artificial intelligence (AI) have provided innovative approaches to design and optimize these systems, improving their efficacy and adaptability. This review encompasses the integration of AI in the conceptualization and development of NP drug delivery systems, signifying its potential to revolutionize the field. The review discusses the different AI methods such as machine learning, neural networks, and optimization algorithms that simplify the fabrication of NPs with tailored characteristics such as size, surface chemistry, and drug release profiles. AI can also standardize these characteristics to enhance drug loading capacity, targeting specificity, and controlled release at the chosen site of action. AI-based predictive modeling enables the quick screening of numerous parameters, thus quickening the discovery of optimal NP configurations tailored to specific therapeutic needs. Furthermore, the review also discusses the case studies where AI has efficaciously forecasted NP behavior in biological environments, crucial for enhanced targeting and diminished off-target effects. The amalgamation of AI and nanotechnology not only streamlines the drug development process but also paves the way for personalized medicine. The review also entails the different challenges associated with implementing AI in this field, such as data quality, algorithm transparency, and regulatory specifications. By utilizing AI, researchers and healthcare providers can unlock new potentials in novel drug delivery systems, ultimately advancing the precision and effectiveness of treatments for various diseases. Finally, the review discusses the future directions of AI-based NP design, highlighting its benefits to transform drug delivery and augment patient outcomes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
大个应助科研通管家采纳,获得10
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
天天快乐应助科研通管家采纳,获得10
刚刚
打打应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得30
1秒前
今后应助科研通管家采纳,获得30
1秒前
2秒前
vision发布了新的文献求助10
2秒前
科研狗完成签到,获得积分10
3秒前
共享精神应助直立行走采纳,获得10
3秒前
Genius完成签到,获得积分10
4秒前
qian4完成签到 ,获得积分10
5秒前
7秒前
根根发布了新的文献求助10
10秒前
一棵树完成签到,获得积分10
11秒前
知行完成签到,获得积分10
11秒前
11完成签到 ,获得积分10
11秒前
酷波er应助调皮寒凝采纳,获得10
11秒前
海王類完成签到,获得积分10
12秒前
17秒前
达达发布了新的文献求助10
18秒前
岁月荣耀完成签到,获得积分10
19秒前
MNF发布了新的文献求助10
21秒前
岁月荣耀发布了新的文献求助10
22秒前
23秒前
好好学习完成签到,获得积分10
24秒前
justin完成签到,获得积分10
25秒前
Benzhdw完成签到,获得积分10
27秒前
xiaohu完成签到,获得积分10
29秒前
mm完成签到 ,获得积分10
29秒前
30秒前
科研通AI5应助达达采纳,获得10
31秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777911
求助须知:如何正确求助?哪些是违规求助? 3323444
关于积分的说明 10214462
捐赠科研通 3038671
什么是DOI,文献DOI怎么找? 1667606
邀请新用户注册赠送积分活动 798207
科研通“疑难数据库(出版商)”最低求助积分说明 758304