Improved Feature Selection and Stream Traffic Classification Based on Machine Learning in Software-Defined Networks

计算机科学 特征选择 交通分类 选择(遗传算法) 机器学习 人工智能 软件 软件定义的网络 数据挖掘 计算机网络 操作系统 互联网
作者
Arwa M. Eldhai,Mosab Hamdan,Ahmed Abdelaziz,Mohamed Hashem,Sharief F. Babiker,Muhammad Nadzir Marsono,Muzaffar Hamzah,N. Z. Jhanjhi
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 34141-34159 被引量:2
标识
DOI:10.1109/access.2024.3370435
摘要

Traffic classification (TC) in software-defined networks (SDN) based on machine learning (ML) proves to be a viable option for improving network management. Therefore, TC assists SDN, and SDN facilitates the feature selection (FS) process, especially when using ML as a classification mechanism to extract measurements and related information from the incoming data to the SDN controller. Despite these advantages, there is still a lack of adequate support for tasks related to TC and FS because traffic profiles are often very similar, making classification difficult. Moreover, stream learning (SL), when it is used with TC, shows many challenges. Therefore, robust statistical flow features are needed to reduce the overhead from the SDN control plane. Consequently, these statistical flow features could extract online features, handle concept drift and process an infinite data stream with finite resources (time and memory). This paper aims to improve the overall performance of TC based on the SL technique to selection of relevant FS to alleviate load from the SDN control plane by the following. First, an FS mechanism named Boruta is proposed. Second, we propose a streaming-based traffic classification method in SDN called hoeffding adaptive trees (HAT), adaptive random forest (ARF), and k-nearest neighbour with adaptive sliding window detector (KNN-ADWIN). These techniques can dynamically handle the drift concept and solve the problem of consuming memory and time to reduce the SDN controller's overhead. Third, real and synthetic traffic traces are used to assess the proposed FS and stream TC performance. According to simulation results, the Boruta FS technique can achieve up to 95 % average accuracy, and up to 87% average per application to precision, recall, and f-score than other works in the literature. Furthermore, findings for SL techniques reveal that the proposed methods can retain up to 85% average accuracy, 78% kappa, and average rates between 62-88% in precision, recall, f-score. Also, the HAT has lower time and memory consumption reach to 15s and 105KB comparison to ART and KNN-ADWIN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无语的傲丝完成签到,获得积分10
刚刚
1秒前
Akim应助abc采纳,获得10
1秒前
1秒前
在水一方应助四月采纳,获得10
1秒前
1秒前
小蘑菇应助qdd采纳,获得10
2秒前
2秒前
扣扣尼哇发布了新的文献求助10
2秒前
Hailey发布了新的文献求助10
3秒前
wangchong发布了新的文献求助10
3秒前
东木发布了新的文献求助10
3秒前
微义完成签到,获得积分10
3秒前
侵晓窥檐语156完成签到,获得积分20
3秒前
啦啦啦发布了新的文献求助10
4秒前
李健应助张文静采纳,获得10
4秒前
5秒前
22222发布了新的文献求助10
5秒前
Mickey完成签到,获得积分10
5秒前
5秒前
bubudada关注了科研通微信公众号
6秒前
ZZ发布了新的文献求助10
6秒前
可爱的函函应助七堇采纳,获得10
6秒前
fourwoods发布了新的文献求助10
6秒前
7秒前
子咸发布了新的文献求助10
7秒前
ASU发布了新的文献求助10
8秒前
Rose_Yang发布了新的文献求助150
8秒前
大个应助拓跋箴采纳,获得10
9秒前
9秒前
情怀应助akber123采纳,获得10
9秒前
SciGPT应助小邹爱科研采纳,获得10
10秒前
深情安青应助returno_0采纳,获得10
10秒前
ping发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
12秒前
希望天下0贩的0应助VVV采纳,获得10
13秒前
JamesPei应助fourwoods采纳,获得10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3984689
求助须知:如何正确求助?哪些是违规求助? 3527923
关于积分的说明 11238361
捐赠科研通 3266246
什么是DOI,文献DOI怎么找? 1803149
邀请新用户注册赠送积分活动 880818
科研通“疑难数据库(出版商)”最低求助积分说明 808346