Physics‐Informed Deep Operator Learning Based on Reduced‐Order Modeling for Retrieving the Ocean Interior Density From the Surface

操作员(生物学) 曲面(拓扑) 伽辽金法 计算机科学 可解释性 插值(计算机图形学) 算法 均方误差 加权 应用数学 数学优化 数学 人工智能 物理 几何学 生物化学 抑制因子 转录因子 基因 运动(物理) 化学 统计 非线性系统 量子力学 声学
作者
Yuanhong Chen,Li Liu,Chunxin Yuan,Xiang Sun,Xueen Chen,Zhiqiang Wei,Zhen Gao
出处
期刊:Journal Of Geophysical Research: Oceans [Wiley]
卷期号:129 (2) 被引量:1
标识
DOI:10.1029/2023jc019941
摘要

Abstract Exploring methods to reconstruct the ocean interior from surface data is a crucial focus in the study of ocean processes and phenomena due to the shortage of subsurface and deep‐sea data. Nonetheless, the existing methods predominantly concentrate on either data‐driven or dynamical methodologies, with limited exploration of integrating the strengths of both approaches. To combine the advantages of these two methods for reconstructing the subsurface density field from surface data, a novel dynamics‐constrained deep operator learning network based on reduced‐order model is proposed. Encoding the mean‐squared residuals of the reduced‐order equation along with the mean‐squared error between the network outputs and targets into the loss function effectively merges the dynamical and data constraints during the training process. This integration makes the network outputs and inputs approximately satisfy a specific form of the equation, allowing for interpretability, and once the network is well‐trained, rapid reconstruction evaluation can be performed. The reduced‐order equation is established by the Galerkin projection of quasi‐geostrophic equation onto the low‐dimensional subspace identified via reduced‐basis, which explains the vertical variation of ocean density. The developed model can tackle the challenge of directly measuring subsurface potential vorticity and predicting subsurface density. Evaluation is conducted using simulation data from the Max‐Planck‐Institute ocean model, indicating that it can offer precise estimations, outperforms the purely data‐driven algorithm presented in the paper and the interior plus surface quasi‐geostrophic method, and enables model sharing across different regions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张发布了新的文献求助10
刚刚
科研通AI5应助轻松小张采纳,获得10
1秒前
4秒前
故里完成签到,获得积分10
5秒前
科研通AI5应助丢丢银采纳,获得50
8秒前
jenningseastera应助谢雷XIELei采纳,获得80
8秒前
今后应助张张采纳,获得10
9秒前
10秒前
mxz发布了新的文献求助10
11秒前
冰魂给之桃的求助进行了留言
11秒前
科研通AI5应助王建磊采纳,获得10
11秒前
daydayup完成签到,获得积分10
13秒前
13秒前
mao应助会飞的六眼飞鱼采纳,获得30
13秒前
大模型应助化研采纳,获得10
15秒前
better发布了新的文献求助30
16秒前
18秒前
陶醉的又夏完成签到 ,获得积分10
22秒前
22秒前
稳稳完成签到,获得积分10
22秒前
不如不见完成签到 ,获得积分10
23秒前
Suzy发布了新的文献求助10
24秒前
拾寒关注了科研通微信公众号
24秒前
化研发布了新的文献求助10
27秒前
27秒前
28秒前
28秒前
Suzy完成签到,获得积分10
31秒前
轻松小张发布了新的文献求助10
32秒前
32秒前
zho发布了新的文献求助10
32秒前
领导范儿应助xi采纳,获得10
34秒前
jenningseastera应助谢雷XIELei采纳,获得80
34秒前
Hermit发布了新的文献求助10
34秒前
小郭完成签到 ,获得积分10
35秒前
36秒前
清脆大树完成签到,获得积分10
37秒前
ggbond完成签到,获得积分10
38秒前
明亮的遥完成签到 ,获得积分0
38秒前
ding应助科研通管家采纳,获得50
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776915
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209854
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797658
科研通“疑难数据库(出版商)”最低求助积分说明 757998