Reading recognition of pointer meters based on an improved UNet++ network

计算机科学 指针(用户界面) 人工智能 模式识别(心理学) 算法 计算机视觉 模拟
作者
Yonglong Huo,Hongyi Bai,Laijun Sun,fang yanru
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 035009-035009
标识
DOI:10.1088/1361-6501/ad1226
摘要

Abstract Pointer meters are widely used in modern industries, such as petrochemical applications, substations, and nuclear power plants. To overcome the reading errors and inaccurate measurements due to uneven or fluctuating illumination in practical applications, this paper proposes an improved UNet++ network for recognizing pointer meter readings. First, the scale invariant feature transform feature-matching algorithm is used to adjust the captured tilted meter images to a symmetrical and upright shape. Then, the UNet++ network is used to segment the scale and pointer regions in the dashboard to eliminate background interference. Furthermore, part of the convolution in the UNet++ network is replaced with dilated convolution with different expansion rates to expand the perceptual field during network training. In the UNet++ network jump connection, the attention mechanism module is also introduced in the path to enhance the region’s features to be segmented and suppress the parts of the non-segmented area. A hybrid loss function is used for the network model training to prevent the imbalance of the segmented region share. Finally, the distance method is used to read the gauge representation. Experiments were conducted to compare the performance of the proposed method with that of the original UNet++ network in terms of feasibility and precision. The experimental results showed that the recognition reading accuracy was significantly improved by the enhanced network, with the accuracy, sensitivity, and specificity reaching 98.65%, 84.33%, and 99.38%, respectively. Furthermore, when using the improved UNet++ network for numerical reading, the average relative error was only 0.122%, indicating its robustness in a natural environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
FashionBoy应助完美芒果采纳,获得10
4秒前
mujin发布了新的文献求助10
5秒前
科研通AI5应助健忘症采纳,获得10
5秒前
干炒牛河完成签到,获得积分10
5秒前
香蕉觅云应助十三艘船采纳,获得10
6秒前
LiusuWang发布了新的文献求助30
7秒前
7秒前
老马哥完成签到,获得积分0
8秒前
kali发布了新的文献求助10
9秒前
隐形曼青应助陈昭琼采纳,获得10
9秒前
10秒前
11秒前
11秒前
11秒前
xunl完成签到,获得积分10
11秒前
夏时安完成签到,获得积分10
11秒前
12秒前
13秒前
长情醉柳完成签到 ,获得积分10
14秒前
夏时安发布了新的文献求助20
14秒前
结实星星发布了新的文献求助10
15秒前
15秒前
健忘症发布了新的文献求助10
15秒前
wangyuxin发布了新的文献求助30
18秒前
完美芒果发布了新的文献求助10
18秒前
陈昭琼发布了新的文献求助10
20秒前
知意完成签到,获得积分10
21秒前
21秒前
xzy998应助xiaoxiao采纳,获得10
21秒前
21秒前
乔乔兔应助浅夏采纳,获得10
22秒前
Hello应助正直的文涛采纳,获得10
22秒前
李爱国应助jiafang采纳,获得10
23秒前
十三艘船发布了新的文献求助10
24秒前
guzhfia完成签到,获得积分10
24秒前
26秒前
任1220完成签到,获得积分10
26秒前
鲤鱼幼翠发布了新的文献求助10
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784309
求助须知:如何正确求助?哪些是违规求助? 3329382
关于积分的说明 10242030
捐赠科研通 3044893
什么是DOI,文献DOI怎么找? 1671397
邀请新用户注册赠送积分活动 800254
科研通“疑难数据库(出版商)”最低求助积分说明 759298