Nitrate concentrations tracking from multi-aquifer groundwater vulnerability zones: Insight from machine learning and spatial mapping

含水层 地下水 脆弱性(计算) 跟踪(教育) 环境科学 地质学 水资源管理 水文学(农业) 计算机科学 岩土工程 心理学 教育学 计算机安全
作者
S.I. Abba,Mohamed A. Yassin,Mahmud M. Jibril,Bassam Tawabini,Pantelis Soupios,Abid Khogali,Syed Muzzamil Hussain Shah,Jamilu Usman,Isam H. Aljundi
出处
期刊:Chemical Engineering Research & Design [Elsevier BV]
卷期号:184: 1143-1157
标识
DOI:10.1016/j.psep.2024.02.041
摘要

Nitrate contamination in groundwater is a significant environmental concern that poses risks to human health and ecosystems. Several goals and targets of Sustainable Development Goals (SDGs) are related to water quality, pollution, and sustainable management of water resources, which can encompass nitrate contamination. This study conducted real fieldwork of groundwater samples at several locations in Al-Hassa, Saudi Arabia. Subsequently, experimental based on chromatography (IC) and inductively coupled plasma mass spectrometry (ICP-MS) to analyze several groundwater hydro-geochemical elements. The study aimed to employ spatial mapping and advanced standalone optimization learning, including Elman Neural Network (ELNN), Gaussian Process Regression (GPR) models as nonparametric kernel-based probabilistic, and Random Forests (RFs) for tracking and modelling the nitrate (NO3) (mg/L) concentration. The outcomes were validated using several performance indicators and 2D-graphical methods. The resultant NO3 concentration in Al-Hassa was 77.9 mg/L, and the lowest was 9.8 mg/L. Despite marginal accuracy being obtained for most model combinations, GPR-C2 proved merit and reliable for modelling NO3 concentration with Wolffman Index (WI)=0.99 and PBAIS=−0.0001. The finding indicated that Al-Hassa regions are highly prone to NO3 pollution, further confirmed by spatial mapping. The outcomes provide insight into crucial information and decision-making for groundwater pollution risk at Al-Hassa, Saudi Arabia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每天都要开心完成签到 ,获得积分10
2秒前
water完成签到,获得积分10
3秒前
3秒前
lyp完成签到,获得积分10
5秒前
MchemG应助xzy998采纳,获得10
7秒前
zhu完成签到,获得积分10
7秒前
douKY应助妮儿采纳,获得10
7秒前
微笑牛排发布了新的文献求助30
8秒前
九儿完成签到 ,获得积分10
8秒前
Youtenter发布了新的文献求助10
9秒前
zero完成签到,获得积分10
10秒前
qxj完成签到 ,获得积分10
13秒前
huang关注了科研通微信公众号
13秒前
乐乐应助悦耳的傲薇采纳,获得10
14秒前
MchemG应助xzy998采纳,获得10
17秒前
Rachel完成签到,获得积分10
18秒前
在水一方应助lizhiqian2024采纳,获得10
19秒前
21秒前
22秒前
22秒前
23秒前
森海完成签到,获得积分10
24秒前
Orange应助靓丽的熠彤采纳,获得10
24秒前
masheng完成签到,获得积分10
25秒前
26秒前
完美芒果发布了新的文献求助10
26秒前
26秒前
28秒前
30秒前
希望天下0贩的0应助蓝草采纳,获得10
30秒前
汉堡包应助lin采纳,获得10
31秒前
传奇3应助Jenny采纳,获得10
32秒前
jenningseastera应助妮儿采纳,获得10
34秒前
xiaoqian发布了新的文献求助30
34秒前
许欢发布了新的文献求助10
35秒前
LZL完成签到 ,获得积分10
36秒前
qfby发布了新的文献求助10
37秒前
jia完成签到 ,获得积分10
37秒前
Akim应助科研通管家采纳,获得10
38秒前
JamesPei应助科研通管家采纳,获得10
38秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781766
求助须知:如何正确求助?哪些是违规求助? 3327359
关于积分的说明 10230587
捐赠科研通 3042204
什么是DOI,文献DOI怎么找? 1669890
邀请新用户注册赠送积分活动 799391
科研通“疑难数据库(出版商)”最低求助积分说明 758792