亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A food quality detection method based on electronic nose technology

电子鼻 质量(理念) 计算机科学 模式识别(心理学) 计算机视觉 人工智能 物理 量子力学
作者
Mingyang Wang,Yinsheng Chen,Deyun Chen,Xinchun Tian,Wenjie Zhao,Yunbo Shi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (5): 056004-056004 被引量:5
标识
DOI:10.1088/1361-6501/ad29e4
摘要

Abstract Food quality detection is of great importance for human health and industrial production. Currently, the common detection methods are difficult to achieve the need for fast, accurate, and non-destructive detection. In this work, an electronic nose (E-nose) detection method based on the combination of convolutional neural network combined with wavelet scattering network (CNN-WSN) and improved seahorse optimizes kernel extreme learning machine (ISHO-KELM) is proposed for identifying the quality level of a variety of food products. In the feature extraction part, the abstract features of CNN are fused with the scattering features of WSN, and the obtained CNN-WSN fusion features can characterize the original information of the food quality effectively. In the classifier design and decision-making section, chaotic mapping is used to initialize the population in the seahorse optimisation algorithm (SHO), avoiding the problem that SHO may fall into local optimal solutions. The kernel parameters and regularisation coefficients of the KELM model were then optimized by improving the locomotion, predation, and reproduction behaviors of the hippocampal populations, which solved the problem of the difficult selection of the key parameters in the model, and thus improved the accuracy and generalization of the overall model. To validate the effectiveness of the proposed food quality detection model, the E-nose system was first built and milk quality data were collected independently, and then tested on two publicly available food quality datasets as well as a self-collected milk quality dataset, respectively. The experimental results show that the food quality detection method proposed in this work has good quality assessment effect on different datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潘果果完成签到,获得积分10
5秒前
李健应助山青水秀采纳,获得10
11秒前
六六完成签到 ,获得积分10
20秒前
21秒前
21秒前
Kevin发布了新的文献求助10
24秒前
汉堡包应助这橘不甜采纳,获得30
25秒前
山青水秀给山青水秀的求助进行了留言
27秒前
英姑应助这橘不甜采纳,获得30
35秒前
37秒前
俊逸海瑶发布了新的文献求助10
42秒前
Tethys完成签到 ,获得积分10
43秒前
45秒前
jjjeneny发布了新的文献求助10
51秒前
小蘑菇应助jjjeneny采纳,获得10
58秒前
1分钟前
YifanWang应助这橘不甜采纳,获得30
1分钟前
1分钟前
sqHALO发布了新的文献求助30
1分钟前
俊逸海瑶完成签到,获得积分10
1分钟前
1分钟前
1分钟前
sqHALO完成签到,获得积分20
1分钟前
逸云完成签到,获得积分20
1分钟前
这橘不甜发布了新的文献求助30
1分钟前
高星星发布了新的文献求助10
1分钟前
小彭友完成签到 ,获得积分10
1分钟前
逸云发布了新的文献求助30
1分钟前
1分钟前
2分钟前
seven发布了新的文献求助10
2分钟前
这橘不甜发布了新的文献求助30
2分钟前
高星星完成签到,获得积分10
2分钟前
科研通AI2S应助悦耳破茧采纳,获得10
2分钟前
小武wwwww完成签到 ,获得积分10
2分钟前
大碗完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
李洁完成签到 ,获得积分10
2分钟前
3分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795552
求助须知:如何正确求助?哪些是违规求助? 3340566
关于积分的说明 10300530
捐赠科研通 3057097
什么是DOI,文献DOI怎么找? 1677428
邀请新用户注册赠送积分活动 805404
科研通“疑难数据库(出版商)”最低求助积分说明 762507