Structural Formation and Pore Control of Freeze-Cast Directional Graphene Aerogel (DGA)

材料科学 石墨烯 冰晶 气凝胶 电解质 层状结构 多孔介质 氧化物 纳米技术 化学工程 复合材料 多孔性 电极 气象学 化学 物理 物理化学 工程类 冶金
作者
Mian Umar Saeed,Yu-Kai Weng,Mohammad Bahzad,Seungha Shin,Doug Aaron,Kenneth D. Kihm
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (1): 425-434 被引量:7
标识
DOI:10.1021/acsami.3c10998
摘要

Directional graphene aerogels (DGAs) are proposed as electrode materials to alleviate ionic and mass transport issues in organic redox flow batteries (ORFBs). DGAs with high pore directionality would provide low resistance channels for effective ionic charge and liquid electrolyte transport in these devices. DGAs' porous and directional characteristics can be controlled by the growth of ice crystals during freeze casting, which is influenced by the self-diffusivity of water, phase change driving forces, water–ice graphene interactions, and convection in the water–graphene media. It is found that mass transport-related properties of DGAs, including pore size and directionality, show a significant dependence on freezing temperature, graphene oxide (GO) loadings, and synthesis vessel diameter-to-height ratio (D/H). For the freezing temperature change from −20 to −115 °C, the average pore size progressively decreased from 120 to 20 μm, and the pore directionality transitioned from lamellar to ill-defined structures. When GO loadings were increased from 2 to 10 mg/mL at a fixed freezing temperature, pore size reduction was observed with less defined directionality. Furthermore, the pore directionality diminished with an increased width-to-height aspect ratio of DGA samples due to the buoyancy-driven convective circulation, which interfered with the directional ice/pore growth. Understanding the comprehensive effects of these mechanisms enables the controlled growth of ice crystals, leading to graphene aerogels with highly directional microstructures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的凝梦完成签到,获得积分10
刚刚
在水一方应助12111采纳,获得10
刚刚
dwdw完成签到,获得积分10
刚刚
jack发布了新的文献求助10
1秒前
1秒前
qly应助糊涂的剑采纳,获得10
1秒前
Questa_Qin发布了新的文献求助10
1秒前
2秒前
赘婿应助yue采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
潇洒小高发布了新的文献求助30
3秒前
4秒前
4秒前
缓慢沁完成签到,获得积分10
4秒前
我行完成签到,获得积分10
4秒前
dz应助洁净的士晋采纳,获得10
4秒前
5秒前
5秒前
5秒前
无声瀑布发布了新的文献求助10
6秒前
cc发布了新的文献求助10
6秒前
zhj完成签到,获得积分10
6秒前
6秒前
阳光老黑发布了新的文献求助10
6秒前
正直的半梅完成签到,获得积分10
7秒前
举个栗子发布了新的文献求助10
7秒前
7秒前
7秒前
cyw完成签到,获得积分10
8秒前
8秒前
糟糕的铁锤应助wanci采纳,获得100
8秒前
完美世界应助小王同学采纳,获得10
9秒前
10秒前
10秒前
向日葵发布了新的文献求助10
11秒前
12秒前
12秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4093571
求助须知:如何正确求助?哪些是违规求助? 3632181
关于积分的说明 11512448
捐赠科研通 3342879
什么是DOI,文献DOI怎么找? 1837359
邀请新用户注册赠送积分活动 905079
科研通“疑难数据库(出版商)”最低求助积分说明 822934