COMET: An Interactive Framework for Efficient and Effective Community Search via Active Learning

计算机科学 稳健性(进化) 页面排名 数据挖掘 搜索算法 图形 钥匙(锁) 搜索引擎 理论计算机科学 熵(时间箭头) 机器学习 节点(物理) 过程(计算) 聚类分析 主动学习(机器学习) 情报检索 启发式 散列函数 信息需求 语义搜索 加入 二进制搜索算法 知识图 个性化搜索 数据集成 特征学习
作者
Jiawei Zhou,Kai Wang,Jianwei Wang,Kunpeng Zhang,Xuemin Lin
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2024.0834
摘要

In recent years, substantial advancements in query-dependent community search (CS) have been driven by growing demands in various downstream applications such as social network analysis, fraud detection, bioinformatics, and others. They require methods to identify structurally cohesive communities that are dependent on specific queries. Learning-based interactive CS (ICS) models the search process as multiround with human interaction, enhancing its practicality. Nonetheless, learning-based approaches for ICS face two challenges. First, current methods for narrowing the search space rely on either query information or fixed topological structures, resulting in insufficient robustness when querying communities on large-scale graphs. Second, there is an absence of an effective interaction strategy in ICS, where the algorithm should offer users choices of highly uncertain nodes to iteratively refine search quality. To address these issues, we propose COMET, an interactive community search framework designed for large-scale graphs. COMET consists of three key modules: First, it features a community-aware subgraph module tailored to each specific query based on Personalized PageRank (PPR), considering both query information and topological structure. Second, we conceptualize ICS as a series of binary classification tasks, employing a graph neural network (GNN) to propagate label information within the candidate subgraph in each round. Finally, a novel active learning–based node selection module uses entropy from GNN and PPR from the subgraph module to dynamically select the most crucial nodes for labeling in each round. Extensive experimental evaluations demonstrate that COMET significantly outperforms state-of-the-art learning-based CS and ICS methods across eight real-world data sets. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: K. Wang was supported by the National Natural Science Foundation of China [Grants 72221001 and 62302294]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0834 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0834 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助时光采纳,获得30
刚刚
fei完成签到,获得积分10
1秒前
1秒前
汤泽琪发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
2秒前
辛勤者完成签到,获得积分10
2秒前
2秒前
2秒前
2秒前
木子完成签到,获得积分10
3秒前
段盈完成签到,获得积分10
3秒前
人1发布了新的文献求助20
4秒前
大个应助谦让的飞绿采纳,获得10
4秒前
4秒前
camell发布了新的文献求助10
4秒前
123456yd完成签到,获得积分10
4秒前
5秒前
科研通AI6.1应助太阳采纳,获得10
5秒前
小张同学完成签到,获得积分20
5秒前
5秒前
年轻亦竹发布了新的文献求助10
6秒前
Charon发布了新的文献求助10
6秒前
酷波er应助yingxutravel采纳,获得10
6秒前
7秒前
XY发布了新的文献求助10
7秒前
茶茶发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
8秒前
悦耳怜珊发布了新的文献求助10
9秒前
LioXH发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助吴大王采纳,获得10
11秒前
桐桐应助土豪的荔枝采纳,获得10
11秒前
camell完成签到,获得积分10
12秒前
Lucas应助断桥烟雨采纳,获得10
12秒前
13秒前
Charon完成签到,获得积分10
13秒前
简单水蓉完成签到,获得积分10
13秒前
钟江完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760635
求助须知:如何正确求助?哪些是违规求助? 5525448
关于积分的说明 15397980
捐赠科研通 4897422
什么是DOI,文献DOI怎么找? 2634176
邀请新用户注册赠送积分活动 1582268
关于科研通互助平台的介绍 1537637