COMET: An Interactive Framework for Efficient and Effective Community Search via Active Learning

彗星 计算机科学 天体生物学 物理
作者
Jiawei Zhou,Kai Wang,Jianwei Wang,Kunpeng Zhang,Xuemin Lin
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2024.0834
摘要

In recent years, substantial advancements in query-dependent community search (CS) have been driven by growing demands in various downstream applications such as social network analysis, fraud detection, bioinformatics, and others. They require methods to identify structurally cohesive communities that are dependent on specific queries. Learning-based interactive CS (ICS) models the search process as multiround with human interaction, enhancing its practicality. Nonetheless, learning-based approaches for ICS face two challenges. First, current methods for narrowing the search space rely on either query information or fixed topological structures, resulting in insufficient robustness when querying communities on large-scale graphs. Second, there is an absence of an effective interaction strategy in ICS, where the algorithm should offer users choices of highly uncertain nodes to iteratively refine search quality. To address these issues, we propose COMET, an interactive community search framework designed for large-scale graphs. COMET consists of three key modules: First, it features a community-aware subgraph module tailored to each specific query based on Personalized PageRank (PPR), considering both query information and topological structure. Second, we conceptualize ICS as a series of binary classification tasks, employing a graph neural network (GNN) to propagate label information within the candidate subgraph in each round. Finally, a novel active learning–based node selection module uses entropy from GNN and PPR from the subgraph module to dynamically select the most crucial nodes for labeling in each round. Extensive experimental evaluations demonstrate that COMET significantly outperforms state-of-the-art learning-based CS and ICS methods across eight real-world data sets. History: Accepted by Ram Ramesh, Area Editor for Data Science & Machine Learning. Funding: K. Wang was supported by the National Natural Science Foundation of China [Grants 72221001 and 62302294]. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2024.0834 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2024.0834 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助leo采纳,获得10
1秒前
苏暖完成签到,获得积分10
1秒前
2秒前
浮游应助小柠檬采纳,获得10
3秒前
科研通AI6应助小柠檬采纳,获得10
3秒前
3秒前
饼饼发布了新的文献求助10
6秒前
szh完成签到,获得积分20
10秒前
帝蒼完成签到,获得积分10
11秒前
11秒前
abiden完成签到,获得积分10
14秒前
leo发布了新的文献求助10
14秒前
15秒前
Hello应助爆炸的药丸采纳,获得50
15秒前
天天快乐应助999采纳,获得10
15秒前
16秒前
李健应助huajinoob采纳,获得10
16秒前
今天你论文了吗完成签到,获得积分10
16秒前
舒心的怜翠完成签到 ,获得积分10
17秒前
叫啥不吃饭完成签到,获得积分10
18秒前
October完成签到,获得积分10
18秒前
987完成签到 ,获得积分10
18秒前
浮游应助juwairen119采纳,获得10
19秒前
wujunhg关注了科研通微信公众号
21秒前
小王同学完成签到 ,获得积分10
22秒前
快乐的晟睿完成签到,获得积分10
24秒前
xx完成签到,获得积分10
24秒前
24秒前
科研通AI5应助sgyhbxf25采纳,获得10
24秒前
ttg990720完成签到,获得积分10
26秒前
科研通AI5应助好多鱼采纳,获得10
26秒前
Jiangzhibing发布了新的文献求助10
27秒前
濡益完成签到 ,获得积分10
27秒前
mairipaiti发布了新的文献求助30
27秒前
28秒前
betyby完成签到 ,获得积分10
28秒前
29秒前
科研通AI6应助ttg990720采纳,获得10
31秒前
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4635386
求助须知:如何正确求助?哪些是违规求助? 4030418
关于积分的说明 12470305
捐赠科研通 3716953
什么是DOI,文献DOI怎么找? 2051317
邀请新用户注册赠送积分活动 1082572
科研通“疑难数据库(出版商)”最低求助积分说明 964819