亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Generalizable medical image enhancement using structure-preserved diffusion models

图像增强 扩散 计算机科学 图像(数学) 计算机视觉 人工智能 物理 热力学
作者
Lulu Chen,Xiangyang Yu,Haojin Li,Huiyan Lin,Ke Niu,Heng Li
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:70 (14): 145013-145013
标识
DOI:10.1088/1361-6560/ade844
摘要

Clinical medical images often suffer from compromised quality, which negatively impacts the diagnostic process by both clinicians and AI algorithms. While GAN-based enhancement methods have been commonly developed in recent years, delicate model training is necessary due to issues with artifacts, mode collapse, and instability. Diffusion models have shown promise in generating high-quality images superior to GANs, but challenges in training data collection and domain gaps hinder applying them for medical image enhancement. Additionally, preserving fine structures in enhancing medical images with diffusion models is still an area that requires further exploration. To overcome these challenges, we propose generalizable medical image enhancement using structure-preserved diffusion models (GEDM) leverages joint supervision from enhancement and segmentation to boost structure preservation and generalizability. Specifically, synthetic data is used to collect high-low quality paired training data with structure masks, and the Laplace transform is employed to reduce domain gaps and introduce multi-scale conditions. GEDM conducts medical image enhancement and segmentation jointly, supervised by high-quality references and structure masks from the training data. Four datasets of two medical imaging modalities were collected to implement the experiments, where GEDM outperformed state-of-the-art methods in image enhancement, as well as follow-up medical analysis tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
安贝的呐喊完成签到,获得积分10
14秒前
wesz9887应助dd采纳,获得10
28秒前
西山菩提完成签到,获得积分10
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
DannyNickolov完成签到,获得积分20
2分钟前
2分钟前
drgaoying发布了新的文献求助10
2分钟前
drgaoying完成签到,获得积分10
2分钟前
2分钟前
El发布了新的文献求助10
3分钟前
菜菜完成签到,获得积分20
3分钟前
3分钟前
番茄超级淡完成签到,获得积分10
3分钟前
4分钟前
polaris完成签到,获得积分10
4分钟前
科研通AI5应助polaris采纳,获得30
4分钟前
norberta发布了新的文献求助10
4分钟前
4分钟前
Sunny发布了新的文献求助10
4分钟前
4分钟前
科研通AI5应助starbinbin采纳,获得50
5分钟前
5分钟前
starbinbin发布了新的文献求助50
5分钟前
Virtual应助科研通管家采纳,获得10
5分钟前
乐乐应助科研通管家采纳,获得10
5分钟前
5分钟前
6分钟前
6分钟前
四天垂完成签到 ,获得积分10
7分钟前
7分钟前
Virtual应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
8分钟前
方沅完成签到,获得积分10
8分钟前
8分钟前
8分钟前
123456777完成签到 ,获得积分0
9分钟前
9分钟前
9分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4498844
求助须知:如何正确求助?哪些是违规求助? 3949822
关于积分的说明 12244895
捐赠科研通 3608356
什么是DOI,文献DOI怎么找? 1984872
邀请新用户注册赠送积分活动 1021331
科研通“疑难数据库(出版商)”最低求助积分说明 913754