Machine learning versus regression for prediction of sporadic pancreatic cancer

医学 比例危险模型 内科学 逻辑回归 队列 回顾性队列研究 癌症 肿瘤科
作者
Wansu Chen,Botao Zhou,Christie Y. Jeon,Fagen Xie,Yu‐Chen Lin,Rebecca K. Butler,Yichen Zhou,Tiffany Luong,Eva Lustigova,Joseph Pisegna,Bechien U. Wu
出处
期刊:Pancreatology [Elsevier BV]
卷期号:23 (4): 396-402 被引量:11
标识
DOI:10.1016/j.pan.2023.04.009
摘要

There is currently no widely accepted approach to identify patients at increased risk for sporadic pancreatic cancer (PC). We aimed to compare the performance of two machine-learning models with a regression-based model in predicting pancreatic ductal adenocarcinoma (PDAC), the most common form of PC. This retrospective cohort study consisted of patients 50–84 years of age enrolled in either Kaiser Permanente Southern California (KPSC, model training, internal validation) or the Veterans Affairs (VA, external testing) between 2008 and 2017. The performance of random survival forests (RSF) and eXtreme gradient boosting (XGB) models were compared to that of COX proportional hazards regression (COX). Heterogeneity of the three models were assessed. The KPSC and the VA cohorts consisted of 1.8 and 2.7 million patients with 1792 and 4582 incident PDAC cases within 18 months, respectively. Predictors selected into all three models included age, abdominal pain, weight change, and glycated hemoglobin (A1c). Additionally, RSF selected change in alanine transaminase (ALT), whereas the XGB and COX selected the rate of change in ALT. The COX model appeared to have lower AUC (KPSC: 0.737, 95% CI 0.710-0.764; VA: 0.706, 0.699-0.714), compared to those of RSF (KPSC: 0.767, 0.744-0.791; VA: 0.731, 0.724-0.739) and XGB (KPSC: 0.779, 0.755-0.802; VA: 0.742, 0.735-0.750). Among patients with top 5% predicted risk from all three models (N = 29,663), 117 developed PDAC, of which RSF, XGB and COX captured 84 (9 unique), 87 (4 unique), 87 (19 unique) cases, respectively. The three models complement each other, but each has unique contributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
伶俐绿柏完成签到 ,获得积分10
刚刚
蔡继海发布了新的文献求助10
2秒前
3秒前
ale完成签到,获得积分10
4秒前
5秒前
5秒前
科研通AI5应助Narcisa采纳,获得30
5秒前
zy发布了新的文献求助10
6秒前
小李同学完成签到,获得积分10
7秒前
科研通AI2S应助风趣的易真采纳,获得10
7秒前
8秒前
Revovler发布了新的文献求助10
11秒前
seedcui完成签到,获得积分10
11秒前
领导范儿应助zy采纳,获得10
11秒前
Byron完成签到,获得积分10
12秒前
HEAUBOOK应助雪原白鹿采纳,获得10
17秒前
18秒前
王一完成签到 ,获得积分10
19秒前
21秒前
24秒前
牛牛完成签到,获得积分10
26秒前
HermanCheney发布了新的文献求助10
26秒前
Narcisa发布了新的文献求助30
28秒前
29秒前
wang发布了新的文献求助10
30秒前
31秒前
吼吼哈哈完成签到,获得积分10
32秒前
木头发布了新的文献求助10
33秒前
哈哈哈完成签到,获得积分20
33秒前
36秒前
哈哈哈发布了新的文献求助10
37秒前
dustwling发布了新的文献求助10
37秒前
38秒前
hl完成签到,获得积分10
38秒前
内向莛发布了新的文献求助10
40秒前
水若冰寒发布了新的文献求助10
42秒前
wang完成签到,获得积分10
45秒前
圆圆的脑袋完成签到,获得积分10
46秒前
hl发布了新的文献求助10
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322186
关于积分的说明 10209239
捐赠科研通 3037436
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757959