已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A machine learning‐derived neuroanatomical pattern predicts delayed reward discounting in the Human Connectome Project Young Adult sample

人类连接体项目 连接体 心理学 显著性(神经科学) 神经科学 单变量 默认模式网络 人脑 冲动性 脑形态计量学 认知 发展心理学 多元统计 磁共振成像 机器学习 计算机科学 功能连接 医学 放射科
作者
Hui Xu,James MacKillop,Max M. Owens
出处
期刊:Journal of Neuroscience Research [Wiley]
卷期号:101 (7): 1125-1137 被引量:2
标识
DOI:10.1002/jnr.25185
摘要

Delayed reward discounting (DRD) is defined as the extent to which person favors smaller rewards that are immediately available over larger rewards available in the future. Higher levels of DRD have been identified in individuals with a wide range of clinical disorders. Although there have been studies adopting larger samples and using only gray matter volume to characterize the neuroanatomical correlates of DRD, it is still unclear whether previously identified relationships are generalizable (out-of-sample) and how cortical thickness and cortical surface area contribute to DRD. In this study, using the Human Connectome Project Young Adult dataset (N = 1038), a machine learning cross-validated elastic net regression approach was used to characterize the neuroanatomical pattern of structural magnetic resonance imaging variables associated with DRD. The results revealed a multi-region neuroanatomical pattern predicted DRD and this was robust in a held-out test set (morphometry-only R2 = 3.34%, morphometry + demographics R2 = 6.96%). The neuroanatomical pattern included regions implicated in the default mode network, executive control network, and salience network. The relationship of these regions with DRD was further supported by univariate linear mixed effects modeling results, in which many of the regions identified as part of this pattern showed significant univariate associations with DRD. Taken together, these findings provide evidence that a machine learning-derived neuroanatomical pattern encompassing various theoretically relevant brain networks produces robustly predicts DRD in a large sample of healthy young adults.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CRYLK完成签到 ,获得积分10
刚刚
安静的瑾瑜完成签到 ,获得积分10
刚刚
甜甜甜完成签到 ,获得积分10
2秒前
3秒前
zzc完成签到,获得积分10
4秒前
RUSTY发布了新的文献求助10
8秒前
WaitP应助iu1392采纳,获得10
8秒前
9秒前
孝艺完成签到 ,获得积分10
10秒前
Rory完成签到 ,获得积分10
11秒前
shy完成签到,获得积分10
12秒前
传奇3应助RUSTY采纳,获得10
13秒前
岳小龙完成签到 ,获得积分10
14秒前
17秒前
zzc发布了新的文献求助10
18秒前
yuaner发布了新的文献求助10
23秒前
Party完成签到 ,获得积分10
23秒前
Nick完成签到 ,获得积分10
26秒前
26秒前
翎儿响叮当完成签到 ,获得积分10
28秒前
丰富的绮波完成签到 ,获得积分10
30秒前
布同完成签到,获得积分10
31秒前
邱邱发布了新的文献求助10
31秒前
称心的语梦完成签到,获得积分10
31秒前
不甜完成签到 ,获得积分10
32秒前
33秒前
WaitP应助QinGY采纳,获得10
34秒前
qiang344完成签到 ,获得积分10
34秒前
35秒前
36秒前
可久斯基完成签到 ,获得积分10
37秒前
朱朱猪猪发布了新的文献求助10
38秒前
39秒前
道格拉斯的小妖完成签到 ,获得积分10
41秒前
42秒前
Hello应助畅快的紫烟采纳,获得10
42秒前
ding应助畅快的紫烟采纳,获得10
42秒前
今后应助畅快的紫烟采纳,获得10
42秒前
肖福艳发布了新的文献求助10
42秒前
xiao_niu完成签到,获得积分10
44秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798390
求助须知:如何正确求助?哪些是违规求助? 3343808
关于积分的说明 10317752
捐赠科研通 3060542
什么是DOI,文献DOI怎么找? 1679576
邀请新用户注册赠送积分活动 806729
科研通“疑难数据库(出版商)”最低求助积分说明 763296