外体
细胞生物学
自噬
微泡
生物
程序性细胞死亡
线粒体
ATG5型
小RNA
细胞凋亡
生物化学
基因
作者
Shatakshi Shukla,Fatema Currim,Jyoti Singh,Shanikumar Goyani,M. V. Saranga,Anjali Shinde,Minal Mane,Nisha Chandak,Shyam Kishore,Rajesh Singh
标识
DOI:10.1016/j.biocel.2023.106439
摘要
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by dopaminergic neuronal cell death. Emerging evidence suggest exosomes as a crucial player in the progression and pathogenesis of PD via intercellular communication between different cell types in brain. Exosome release is enhanced from dysfunctional neurons/glia (source cells) under PD stress and mediates the transfer of biomolecules between different cell types (recipient) in brain leading to unique functional outcomes. Exosome release is modulated by alterations in the autophagy and lysosomal pathways; however, the molecular factors regulating these pathways remain elusive. Micro-RNAs (miRNAs) are class of non-coding RNAs that regulate gene expression post-transcriptionally by binding target mRNA and modulate its turnover and translation; however their role in modulating exosome release is not understood. Here, we analyzed the miRNAs-mRNAs network which target cellular processes regulating exosome release. hsa-miR-320a showed the maximum mRNA targets of autophagy, lysosome, mitochondria and exosome release pathways. hsa-miR-320a regulate ATG5 levels and modulate exosome release under PD stress conditions in neuronal SH-SY5Y and glial U-87 MG cells. hsa-miR-320a modulates autophagic flux, lysosomal functions, and mitochondrial ROS in neuronal SH-SY5Y and glial U-87 MG cells. Exosomes derived from hsa-miR-320a expressing source cells under PD stress conditions were actively internalized in the recipient cells and rescued cell death and mitochondrial ROS. These results suggest that hsa-miR-320a regulates autophagy and lysosomal pathways and modulates exosome release in the source cells and derived exosomes under PD stress conditions rescue cell death and mitochondrial ROS in the recipient neuronal and glial cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI