Longevity-conscious energy management strategy of fuel cell hybrid electric Vehicle Based on deep reinforcement learning

强化学习 能源管理 燃料效率 行驶循环 计算机科学 汽车工程 能源消耗 氢燃料 模拟 工程类
作者
Xiaolin Tang,Haitao Zhou,Feng Wang,Weida Wang,Xianke Lin
出处
期刊:Energy [Elsevier BV]
卷期号:238: 121593-121593
标识
DOI:10.1016/j.energy.2021.121593
摘要

Deep reinforcement learning-based energy management strategy play an essential role in improving fuel economy and extending fuel cell lifetime for fuel cell hybrid electric vehicles. In this work, the traditional Deep Q-Network is compared with the Deep Q-Network with prioritized experience replay. Furthermore, the Deep Q-Network with prioritized experience replay is designed for energy management strategy to minimize hydrogen consumption and compared with the dynamic programming. Moreover, the fuel cell system degradation is incorporated into the objective function, and a balance between fuel economy and fuel cell system degradation is achieved by adjusting the degradation weight and the hydrogen consumption weight. Finally, the combined driving cycle is selected to further verify the effectiveness of the proposed strategy in unfamiliar driving environments and untrained situations. The training results under UDDS show that the fuel economy of the EMS decreases by 0.53 % when fuel cell system degradation is considered, reaching 88.73 % of the DP-based EMS in the UDDS, and the degradation of fuel cell system is effectively suppressed. At the same time, the computational efficiency is improved by more than 70 % compared to the DP-based strategy. • A deep reinforcement learning energy management framework is developed. • An improved Deep Q-Network algorithm is used for energy management. • A PER-DQN-based energy management that considers the degradation of fuel cell is proposed. • A combined driving cycle is selected to further verify the effectiveness of the proposed strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助zhangzhangzhang采纳,获得30
刚刚
1秒前
淡淡桐发布了新的文献求助10
2秒前
2秒前
HC发布了新的文献求助20
2秒前
碧阳的尔风完成签到,获得积分10
3秒前
梓唯忧完成签到 ,获得积分10
3秒前
5秒前
5秒前
5秒前
Lucas应助庾灭男采纳,获得10
6秒前
诸天蓉完成签到,获得积分10
6秒前
维时完成签到,获得积分10
7秒前
Jasper应助zhang采纳,获得10
7秒前
maodou发布了新的文献求助10
7秒前
9秒前
维时发布了新的文献求助10
9秒前
Mic完成签到,获得积分10
9秒前
LL发布了新的文献求助10
10秒前
老实的晓绿完成签到,获得积分10
10秒前
CNS冲应助111采纳,获得50
11秒前
影子完成签到,获得积分10
12秒前
12秒前
喜悦蚂蚁完成签到,获得积分10
12秒前
小小li完成签到 ,获得积分10
12秒前
12秒前
画风湖湘卷完成签到,获得积分10
13秒前
13秒前
sky完成签到,获得积分10
13秒前
Akim应助翁雁丝采纳,获得10
14秒前
15秒前
叫我魔王大人完成签到,获得积分10
15秒前
15秒前
maodou完成签到,获得积分20
15秒前
支摇伽发布了新的文献求助60
16秒前
情怀应助影子采纳,获得30
16秒前
心肝宝贝甜蜜饯完成签到,获得积分10
17秒前
Shao_Jq完成签到 ,获得积分10
18秒前
隐形如柏发布了新的文献求助20
18秒前
木槿发布了新的文献求助100
18秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793282
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288256
捐赠科研通 3054633
什么是DOI,文献DOI怎么找? 1676057
邀请新用户注册赠送积分活动 804058
科研通“疑难数据库(出版商)”最低求助积分说明 761737