A survey of circular RNAs in complex diseases: databases, tools and computational methods

计算机科学 新颖性 计算生物学 疾病 人工智能 机器学习 生物信息学 生物 医学 神学 哲学 病理
作者
Qiu Xiao,Jianhua Dai,Jiawei Luo
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (1) 被引量:21
标识
DOI:10.1093/bib/bbab444
摘要

Circular RNAs (circRNAs) are a category of novelty discovered competing endogenous non-coding RNAs that have been proved to implicate many human complex diseases. A large number of circRNAs have been confirmed to be involved in cancer progression and are expected to become promising biomarkers for tumor diagnosis and targeted therapy. Deciphering the underlying relationships between circRNAs and diseases may provide new insights for us to understand the pathogenesis of complex diseases and further characterize the biological functions of circRNAs. As traditional experimental methods are usually time-consuming and laborious, computational models have made significant progress in systematically exploring potential circRNA-disease associations, which not only creates new opportunities for investigating pathogenic mechanisms at the level of circRNAs, but also helps to significantly improve the efficiency of clinical trials. In this review, we first summarize the functions and characteristics of circRNAs and introduce some representative circRNAs related to tumorigenesis. Then, we mainly investigate the available databases and tools dedicated to circRNA and disease studies. Next, we present a comprehensive review of computational methods for predicting circRNA-disease associations and classify them into five categories, including network propagating-based, path-based, matrix factorization-based, deep learning-based and other machine learning methods. Finally, we further discuss the challenges and future researches in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
byron完成签到,获得积分10
1秒前
DW发布了新的文献求助10
2秒前
Nolan完成签到,获得积分10
3秒前
安静一曲完成签到 ,获得积分10
4秒前
勤劳的道罡完成签到,获得积分10
4秒前
陈宏宇完成签到,获得积分10
5秒前
6秒前
从南到北发布了新的文献求助10
6秒前
思源应助wangSF采纳,获得10
9秒前
聪明胡图图完成签到,获得积分10
10秒前
ksxx发布了新的文献求助10
11秒前
木头人应助Carly采纳,获得20
12秒前
垃圾桶完成签到,获得积分10
12秒前
田様应助Cm采纳,获得10
12秒前
充电宝应助左丘世立采纳,获得10
14秒前
ding应助淡淡的凌旋采纳,获得10
15秒前
h'c'z完成签到,获得积分10
15秒前
16秒前
Ava应助sfliufighting采纳,获得10
17秒前
17秒前
17秒前
17秒前
谦让小松鼠完成签到,获得积分10
20秒前
Akim应助Alicer采纳,获得20
20秒前
传奇3应助Rae采纳,获得20
20秒前
whh完成签到,获得积分10
21秒前
傲娇芷雪完成签到,获得积分10
21秒前
明芬发布了新的文献求助10
22秒前
23秒前
vivvy完成签到,获得积分10
23秒前
Kirito应助Micky采纳,获得40
23秒前
CodeCraft应助Havibi采纳,获得10
24秒前
CACT完成签到,获得积分10
24秒前
叫我少爷完成签到 ,获得积分10
26秒前
1Yer6完成签到 ,获得积分10
28秒前
xiaoxiaozhu完成签到,获得积分10
29秒前
fengpu应助Sylus采纳,获得20
30秒前
30秒前
归尘应助helicase采纳,获得30
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
Stem Cells: Scientific Facts and Fiction 3rd Edition 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158059
求助须知:如何正确求助?哪些是违规求助? 3693764
关于积分的说明 11664655
捐赠科研通 3385247
什么是DOI,文献DOI怎么找? 1856880
邀请新用户注册赠送积分活动 918086
科研通“疑难数据库(出版商)”最低求助积分说明 831347