Thanka Mural Inpainting Based on Multi-Scale Adaptive Partial Convolution and Stroke-Like Mask

修补 壁画 卷积(计算机科学) 人工智能 计算机科学 计算机视觉 比例(比率) 核(代数) 像素 图像复原 图像(数学) 数学 图像处理 艺术 视觉艺术 绘画 量子力学 组合数学 物理 人工神经网络
作者
Nianyi Wang,Weilan Wang,Wenjin Hu,Aaron Fenster,Shuo Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 3720-3733 被引量:45
标识
DOI:10.1109/tip.2021.3064268
摘要

Thanka murals are important cultural heritages of Tibet, but many precious murals were damaged during history. Thanka mural restoration is very important for the protection of Tibetan cultural heritage. Partial convolution has great potential for Thanka mural restoration due to its outstanding performance for inpainting irregular holes. However, three challenges prevent the existing partial convolution-based methods from solving Thanka restoration problems: 1) the features of multi-scale objects in Thanka murals cannot be extracted correctly because of single-scale partial convolution; 2) the stroke-like Thanka inpainting mode cannot be effectively simulated and learned by existing rectangular or arbitrary masks; and 3) the original content of damaged Thanka murals cannot be restored. To resolve these problems, we propose a Thanka mural inpainting method based on multi-scale adaptive partial convolution and stroke-like masks. The proposed method consists of three parts: 1) a kernel-level multi-scale adaptive partial convolution (MAPConv) to accurately discriminate valid pixels from invalid pixels, and to extract the features of multi-scale objects; 2) a parameter-configurable stroke-like mask generation method to simulate and learn the stroke-like Thanka inpainting mode; and 3) a 2-phase learning framework based on MAPConv Unet and different loss functions to restore the original content of Thanka murals. Experiments on both simulated and real damages of Thanka murals demonstrated that our approach works well on a small dataset (N=2780), generates realistic mural content, and restores the damaged Thanka murals with high speed (600 ms for multiple holes in 512×512 images). The proposed end-to-end method can be applied to other small datasets-based inpainting tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
温良完成签到,获得积分10
1秒前
碧阳的尔风完成签到,获得积分10
2秒前
2秒前
6秒前
Carina完成签到 ,获得积分10
10秒前
不懈奋进应助藏识采纳,获得200
12秒前
longlong完成签到,获得积分20
14秒前
16秒前
平淡小白菜完成签到,获得积分10
16秒前
17秒前
18秒前
丁丁完成签到,获得积分10
20秒前
高圆圆发布了新的文献求助10
20秒前
科研通AI5应助ZGHKY采纳,获得10
22秒前
zzznznnn发布了新的文献求助10
23秒前
24秒前
梦中的奥特曼完成签到,获得积分10
25秒前
25秒前
立军完成签到,获得积分10
27秒前
shuofeng完成签到 ,获得积分10
27秒前
科研通AI5应助下次见采纳,获得10
28秒前
羊踯躅发布了新的文献求助10
28秒前
29秒前
欢喜的皮卡丘完成签到,获得积分10
29秒前
29秒前
思源应助学勾巴采纳,获得10
29秒前
29秒前
Eternity完成签到,获得积分10
29秒前
科研小白完成签到,获得积分10
30秒前
Treasure完成签到,获得积分10
31秒前
31秒前
奂锐123发布了新的文献求助10
34秒前
36秒前
羊踯躅完成签到,获得积分10
36秒前
NexusExplorer应助怕黑的擎采纳,获得10
37秒前
zzznznnn完成签到,获得积分20
38秒前
圈儿多尼发布了新的文献求助10
38秒前
小张完成签到,获得积分10
39秒前
机智明辉完成签到,获得积分10
40秒前
学勾巴发布了新的文献求助10
42秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801430
求助须知:如何正确求助?哪些是违规求助? 3347140
关于积分的说明 10332038
捐赠科研通 3063426
什么是DOI,文献DOI怎么找? 1681673
邀请新用户注册赠送积分活动 807650
科研通“疑难数据库(出版商)”最低求助积分说明 763843