Engineering Social Learning: Information Design of Time-Locked Sales Campaigns for Online Platforms

计算机科学 稳健性(进化) 收入 启发式 运筹学 营销 业务 数学 人工智能 生物化学 基因 会计 化学
作者
Can Küçükgül,Özalp Özer,Shouqiang Wang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (7): 4899-4918 被引量:28
标识
DOI:10.1287/mnsc.2021.4151
摘要

Many online platforms offer time-locked sales campaigns, whereby products are sold at fixed prices for prespecified lengths of time. Platforms often display some information about previous customers’ purchase decisions during campaigns. Using a dynamic Bayesian persuasion framework, we study how a revenue-maximizing platform should optimize its information policy for such a setting. We reformulate the platform’s problem equivalently by reducing the dimensionality of its message space and proprietary history. Specifically, three messages suffice: a neutral recommendation that induces a customer to make her purchase decision according to her private signal about the product and a positive (respectively (resp.), negative) recommendation that induces her to purchase (resp., not purchase) by ignoring her signal. The platform’s proprietary history can be represented by the net purchase position, a single-dimensional summary statistic that computes the cumulative difference between purchases and nonpurchases made by customers having received the neutral recommendation. Subsequently, we establish structural properties of the optimal policy and uncover the platform’s fundamental trade-off: long-term information (and revenue) generation versus short-term revenue extraction. Further, we propose and optimize over a class of heuristic policies. The optimal heuristic policy provides only neutral recommendations up to a cutoff customer and provides only positive or negative recommendations afterward, with the recommendation being positive if and only if the net purchase position after the cutoff customer exceeds a threshold. This policy is easy to implement and numerically shown to perform well. Finally, we demonstrate the generality of our methodology and the robustness of our findings by relaxing some informational assumptions. This paper was accepted by Gabriel Weintraub, revenue management and market analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
袁兆鹏发布了新的文献求助10
刚刚
沉甸甸完成签到,获得积分10
1秒前
核桃应助ovozong采纳,获得10
1秒前
FashionBoy应助钟为海采纳,获得10
3秒前
研友_VZG7GZ应助憨坨采纳,获得10
3秒前
Sakura完成签到 ,获得积分10
4秒前
Ava应助禹子骞采纳,获得10
6秒前
7秒前
Zoo应助六号与七号采纳,获得20
9秒前
Jomain发布了新的文献求助10
10秒前
Ye完成签到,获得积分10
11秒前
淇奥完成签到 ,获得积分10
11秒前
Arueliano完成签到,获得积分10
12秒前
现代雁桃完成签到,获得积分10
14秒前
14秒前
Wxj246801完成签到,获得积分20
15秒前
虚心半兰完成签到,获得积分10
15秒前
Jomain完成签到,获得积分10
15秒前
平淡山柏应助李大有采纳,获得10
16秒前
17秒前
隐形曼青应助呐呐采纳,获得10
18秒前
阿州应助现代雁桃采纳,获得10
19秒前
科研小弟完成签到,获得积分10
20秒前
20秒前
火星上莛完成签到 ,获得积分10
21秒前
奋斗的珍发布了新的文献求助10
22秒前
Xingkun_li完成签到,获得积分10
24秒前
24秒前
24秒前
快乐随心完成签到 ,获得积分10
25秒前
杠赛来完成签到,获得积分10
25秒前
Lucas应助醉熏的天薇采纳,获得30
26秒前
26秒前
FashionBoy应助隐形晓兰采纳,获得10
27秒前
charint应助成就的蓝采纳,获得10
27秒前
充电宝应助成就的蓝采纳,获得10
28秒前
28秒前
29秒前
30秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 540
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
Chinese Buddhist Monasteries: Their Plan and Its Function As a Setting for Buddhist Monastic Life 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4116914
求助须知:如何正确求助?哪些是违规求助? 3655449
关于积分的说明 11574834
捐赠科研通 3358458
什么是DOI,文献DOI怎么找? 1845043
邀请新用户注册赠送积分活动 910547
科研通“疑难数据库(出版商)”最低求助积分说明 826965