维数之咒
维数(图论)
数学
样品(材料)
投影(关系代数)
趋同(经济学)
样本量测定
内在维度
样品空间
概率分布
数学优化
空格(标点符号)
应用数学
计算机科学
统计
算法
组合数学
操作系统
经济增长
色谱法
经济
化学
作者
Jie Wang,Rui Gao,Yao Xie
标识
DOI:10.1109/isit45174.2021.9518186
摘要
We develop a projected Wasserstein distance for the two-sample test, a fundamental problem in statistics and machine learning: given two sets of samples, to determine whether they are from the same distribution. In particular, we aim to circumvent the curse of dimensionality in Wasserstein distance: when the dimension is high, it has diminishing testing power, which is inherently due to the slow concentration property of Wasserstein metrics in the high dimension space. A key contribution is to couple optimal projection to find the low dimensional linear mapping to maximize the Wasserstein distance between projected probability distributions. We characterize the theoretical property of the finite-sample convergence rate on IPMs and present practical algorithms for computing this metric. Numerical examples validate our theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI