Text mining of accident reports using semi-supervised keyword extraction and topic modeling

计算机科学 领域(数学分析) 管道(软件) 事故(哲学) 关键词提取 集合(抽象数据类型) 事故报告 监督学习 机器学习 航空 人工智能 情报检索 数据挖掘 过程(计算) 工程类 计算机安全 人工神经网络 数学分析 操作系统 哲学 航空航天工程 认识论 程序设计语言 数学
作者
Abdhul Ahadh,Govind Vallabhasseri Binish,Rajagopalan Srinivasan
出处
期刊:Chemical Engineering Research & Design [Elsevier]
卷期号:155: 455-465 被引量:32
标识
DOI:10.1016/j.psep.2021.09.022
摘要

Learning from past incidents is critical to achieving and maintaining high process safety performance. Accident and incident records provide one way for learning; however, these are usually in the form of unstructured texts, which makes analysis difficult. Recently, text mining methods based on supervised learning have been proposed for analyzing accident reports; however, they require an impractically large number of labeled records as training examples. This paper proposes an automated, semi-supervised, domain-independent approach for analyzing accident reports. Given a set of user-defined classification topics and domain literature such as handbooks, glossaries, and Wikipedia articles, the method can identify domain-specific keywords and group them into topics with minimal expert involvement. These keywords and topics can then be used for various data mining purposes, including classification. The proposed approach is demonstrated using two different case studies across domains: (1) in aviation to identify the stage of flight when an accident occurs, and (2) in the process industry domain to identify the cause of pipeline accidents. The average classification accuracy of the proposed method was 80% which is comparable to that of supervised learning methods. The key benefits of this approach are that it can generate domain-specific predictive models with limited manual intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shanshan3000完成签到,获得积分10
1秒前
冷昆柏完成签到 ,获得积分10
1秒前
标致的羊发布了新的文献求助10
1秒前
打打应助neo7363采纳,获得10
1秒前
2秒前
丘比特应助青禾采纳,获得10
2秒前
耶比环肽发布了新的文献求助10
3秒前
奥夫发布了新的文献求助10
3秒前
小狗味儿发布了新的文献求助10
3秒前
奔跑的胖纸给奔跑的胖纸的求助进行了留言
4秒前
vampire完成签到 ,获得积分10
4秒前
江南小水龟完成签到,获得积分10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
wangguoxi应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
上官若男应助科研通管家采纳,获得10
5秒前
悠悠应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
SciGPT应助科研通管家采纳,获得30
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
H4ppy_n3w_y34r应助nana采纳,获得10
5秒前
Akim应助科研通管家采纳,获得10
5秒前
领导范儿应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得30
5秒前
flypig1616完成签到,获得积分10
5秒前
5秒前
5秒前
小二郎应助初余采纳,获得10
6秒前
香蕉觅云应助shadow采纳,获得30
6秒前
6秒前
7秒前
FashionBoy应助zyx采纳,获得10
7秒前
spin发布了新的文献求助10
7秒前
9秒前
Lucas应助ellen采纳,获得10
9秒前
热情初瑶发布了新的文献求助10
9秒前
端庄的雪青完成签到,获得积分10
9秒前
脑洞疼应助xsf采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430497
求助须知:如何正确求助?哪些是违规求助? 4543659
关于积分的说明 14188414
捐赠科研通 4461921
什么是DOI,文献DOI怎么找? 2446355
邀请新用户注册赠送积分活动 1437748
关于科研通互助平台的介绍 1414473