清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Tuberculosis detection from chest x-rays for triaging in a high tuberculosis-burden setting: an evaluation of five artificial intelligence algorithms

急诊分诊台 算法 医学 肺结核 接收机工作特性 机器学习 人工智能 考试(生物学) 诊断准确性 异常 放射科 医学物理学 医疗急救 计算机科学 内科学 病理 精神科 古生物学 生物
作者
Zhi Zhen Qin,Shahriar Ahmed,Mohammad Shahnewaz Sarker,Kishor Kumar Paul,Ahammad Shafiq Sikder Adel,Tasneem Naheyan,Rachael Barrett,Sayera Banu,Jacob Creswell
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (9): e543-e554 被引量:180
标识
DOI:10.1016/s2589-7500(21)00116-3
摘要

Artificial intelligence (AI) algorithms can be trained to recognise tuberculosis-related abnormalities on chest radiographs. Various AI algorithms are available commercially, yet there is little impartial evidence on how their performance compares with each other and with radiologists. We aimed to evaluate five commercial AI algorithms for triaging tuberculosis using a large dataset that had not previously been used to train any AI algorithms.Individuals aged 15 years or older presenting or referred to three tuberculosis screening centres in Dhaka, Bangladesh, between May 15, 2014, and Oct 4, 2016, were recruited consecutively. Every participant was verbally screened for symptoms and received a digital posterior-anterior chest x-ray and an Xpert MTB/RIF (Xpert) test. All chest x-rays were read independently by a group of three registered radiologists and five commercial AI algorithms: CAD4TB (version 7), InferRead DR (version 2), Lunit INSIGHT CXR (version 4.9.0), JF CXR-1 (version 2), and qXR (version 3). We compared the performance of the AI algorithms with each other, with the radiologists, and with the WHO's Target Product Profile (TPP) of triage tests (≥90% sensitivity and ≥70% specificity). We used a new evaluation framework that simultaneously evaluates sensitivity, proportion of Xpert tests avoided, and number needed to test to inform implementers' choice of software and selection of threshold abnormality scores.Chest x-rays from 23 954 individuals were included in the analysis. All five AI algorithms significantly outperformed the radiologists. The areas under the receiver operating characteristic curve were 90·81% (95% CI 90·33-91·29) for qXR, 90·34% (89·81-90·87) for CAD4TB, 88·61% (88·03-89·20) for Lunit INSIGHT CXR, 84·90% (84·27-85·54) for InferRead DR, and 84·89% (84·26-85·53) for JF CXR-1. Only qXR (74·3% specificity [95% CI 73·3-74·9]) and CAD4TB (72·9% specificity [72·3-73·5]) met the TPP at 90% sensitivity. All five AI algorithms reduced the number of Xpert tests required by 50% while maintaining a sensitivity above 90%. All AI algorithms performed worse among older age groups (>60 years) and people with a history of tuberculosis.AI algorithms can be highly accurate and useful triage tools for tuberculosis detection in high-burden regions, and outperform human readers.Government of Canada.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
辣辣辣辣辣辣完成签到 ,获得积分10
15秒前
韩麒嘉完成签到 ,获得积分10
48秒前
54秒前
赘婿应助高挑的醉山采纳,获得10
54秒前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
习月阳完成签到,获得积分10
1分钟前
recovery发布了新的文献求助10
1分钟前
研友_GZ3zRn完成签到 ,获得积分0
1分钟前
JY完成签到 ,获得积分10
1分钟前
1分钟前
高挑的醉山完成签到,获得积分10
1分钟前
BINBIN完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
2分钟前
Jamal发布了新的文献求助10
2分钟前
cgs完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
研友_Z119gZ完成签到 ,获得积分10
2分钟前
无花果应助薛定谔的鱼采纳,获得10
2分钟前
张西西完成签到 ,获得积分10
2分钟前
黄如完成签到,获得积分10
2分钟前
隐形的觅波完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
啦啦啦完成签到 ,获得积分10
3分钟前
Jamal完成签到,获得积分20
3分钟前
英喆完成签到 ,获得积分10
3分钟前
菠萝吃多发布了新的文献求助10
3分钟前
elisa828完成签到,获得积分10
4分钟前
着急的若魔完成签到,获得积分10
4分钟前
阜睿完成签到 ,获得积分10
4分钟前
沉沉完成签到 ,获得积分0
4分钟前
lilaccalla完成签到 ,获得积分10
4分钟前
4分钟前
跳跃的曼寒完成签到,获得积分10
4分钟前
脑洞疼应助菠萝吃多采纳,获得10
4分钟前
Angenstern完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
Medical English Clear and Simple(By Melodie Hull) 400
Oxford English for Careers: Nursing / Medicine • 🩺 出版社:Oxford University Press • 400
English in Medicine(作者:Eric H. Glendinning) 400
Ecological and Human Health Impacts of Contaminated Food and Environments 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 计算机科学 内科学 纳米技术 复合材料 化学工程 遗传学 催化作用 物理化学 基因 冶金 量子力学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3927814
求助须知:如何正确求助?哪些是违规求助? 3472567
关于积分的说明 10972749
捐赠科研通 3202336
什么是DOI,文献DOI怎么找? 1769361
邀请新用户注册赠送积分活动 858025
科研通“疑难数据库(出版商)”最低求助积分说明 796262