亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Signed Bipartite Graph Neural Networks

二部图 有符号图 计算机科学 理论计算机科学 匹配(统计) 节点(物理) 人工神经网络 嵌入 人工智能 图形 数学 结构工程 统计 工程类
作者
Junjie Huang,Huawei Shen,Qi Cao,Shuchang Tao,Xueqi Cheng
标识
DOI:10.1145/3459637.3482392
摘要

Signed networks are such social networks having both positive and negative links. A lot of theories and algorithms have been developed to model such networks (e.g., balance theory). However, previous work mainly focuses on the unipartite signed networks where the nodes have the same type. Signed bipartite networks are different from classical signed networks, which contain two different node sets and signed links between two node sets. Signed bipartite networks can be commonly found in many fields including business, politics, and academics, but have been less studied. In this work, we firstly define the signed relationship of the same set of nodes and provide a new perspective for analyzing signed bipartite networks. Then we do some comprehensive analysis of balance theory from two perspectives on several real-world datasets. Specifically, in the peer review dataset, we find that the ratio of balanced isomorphism in signed bipartite networks increased after rebuttal phases. Guided by these two perspectives, we propose a novel Signed Bipartite Graph Neural Networks (SBGNNs) to learn node embeddings for signed bipartite networks. SBGNNs follow most GNNs message-passing scheme, but we design new message functions, aggregation functions, and update functions for signed bipartite networks. We validate the effectiveness of our model on four real-world datasets on Link Sign Prediction task, which is the main machine learning task for signed networks. Experimental results show that our SBGNN model achieves significant improvement compared with strong baseline methods, including feature-based methods and network embedding methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
20秒前
skw0303发布了新的文献求助10
26秒前
汉堡包应助skw0303采纳,获得10
35秒前
量子星尘发布了新的文献求助50
52秒前
xiadu完成签到 ,获得积分10
58秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Joeswith完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
yyds完成签到,获得积分0
2分钟前
Anyemzl完成签到,获得积分10
2分钟前
LY_Qin完成签到,获得积分10
2分钟前
alex_zhao完成签到,获得积分10
2分钟前
3分钟前
陶淘淘发布了新的文献求助10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
双手外科结完成签到,获得积分10
3分钟前
3分钟前
skw0303发布了新的文献求助10
4分钟前
星辰大海应助skw0303采纳,获得30
4分钟前
zsmj23完成签到 ,获得积分0
4分钟前
ddd完成签到,获得积分10
4分钟前
悄悄完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
王唯一发布了新的文献求助10
5分钟前
5分钟前
天天快乐应助王唯一采纳,获得10
5分钟前
曲聋五完成签到 ,获得积分0
5分钟前
5分钟前
5分钟前
5分钟前
Milo完成签到,获得积分10
5分钟前
6分钟前
6分钟前
陶淘淘发布了新的文献求助10
6分钟前
6分钟前
Percy完成签到 ,获得积分10
6分钟前
苹果牌牛仔裤完成签到,获得积分10
6分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4210638
求助须知:如何正确求助?哪些是违规求助? 3744686
关于积分的说明 11785248
捐赠科研通 3413712
什么是DOI,文献DOI怎么找? 1873271
邀请新用户注册赠送积分活动 927804
科研通“疑难数据库(出版商)”最低求助积分说明 837223