已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Flow-Level Dynamic Bandwidth Allocation in SDN-Enabled Edge Cloud using Heuristic Reinforcement Learning

计算机科学 OpenFlow 强化学习 软件定义的网络 云计算 试验台 动态带宽分配 服务质量 计算机网络 分布式计算 实时计算 人工智能 操作系统
作者
Arslan Qadeer,Myung J. Lee,Kazuya Tsukamoto
标识
DOI:10.1109/ficloud49777.2021.00009
摘要

Edge Cloud (EC) is poised to brace massive machine type communication (mMTC) for 5G and IoT by providing compute and network resources at the edge. Yet, the EC being regionally domestic with a smaller scale, faces the challenges of bandwidth and computational throughput. Resource management techniques are considered necessary to achieve efficient resource allocation objectives. Software Defined Network (SDN) enabled EC architecture is emerging as a potential solution that enables dynamic bandwidth allocation and task scheduling for latency sensitive and diverse mobile applications in the EC environment. This study proposes a novel Heuristic Reinforcement Learning (HRL) based flow-level dynamic bandwidth allocation framework and validates it through end-to-end implementation using OpenFlow meter feature. OpenFlow meter provides granular control and allows demand-based flow management to meet the diverse QoS requirements germane to IoT traffics. The proposed framework is then evaluated by emulating an EC scenario based on real NSF COSMOS testbed topology at The City College of New York. A specific heuristic reinforcement learning with linear-annealing technique and a pruning principle are proposed and compared with the baseline approach. Our proposed strategy performs consistently in both Mininet and hardware OpenFlow switches based environments. The performance evaluation considers key metrics associated with real-time applications: throughput, end-to-end delay, packet loss rate, and overall system cost for bandwidth allocation. Furthermore, our proposed linear annealing method achieves faster convergence rate and better reward in terms of system cost, and the proposed pruning principle remarkably reduces control traffic in the network.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
美羊羊完成签到 ,获得积分10
1秒前
江小白完成签到,获得积分0
3秒前
KINDMAGIC完成签到,获得积分10
3秒前
林狗完成签到,获得积分10
4秒前
4秒前
shinble完成签到,获得积分10
5秒前
William完成签到,获得积分10
8秒前
hy发布了新的文献求助10
10秒前
希望天下0贩的0应助汐月采纳,获得10
11秒前
自然的清涟完成签到 ,获得积分10
12秒前
14秒前
shinble发布了新的文献求助10
17秒前
大气小天鹅完成签到 ,获得积分10
18秒前
星辰大海应助科研通管家采纳,获得20
18秒前
NexusExplorer应助科研通管家采纳,获得10
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
科研通AI5应助科研通管家采纳,获得10
18秒前
MchemG应助科研通管家采纳,获得30
18秒前
思源应助科研通管家采纳,获得10
18秒前
18秒前
喜悦夏青发布了新的文献求助10
19秒前
科研通AI5应助自由的无色采纳,获得10
20秒前
斯文的凝珍完成签到,获得积分10
20秒前
21秒前
图样图森破完成签到 ,获得积分10
21秒前
gttlyb完成签到,获得积分10
22秒前
23秒前
小枣完成签到 ,获得积分10
24秒前
七慕凉完成签到,获得积分10
24秒前
Lucas应助微笑子慧采纳,获得10
25秒前
领导范儿应助CSP000采纳,获得10
26秒前
hy完成签到,获得积分10
26秒前
www完成签到,获得积分10
27秒前
爱学习发布了新的文献求助10
27秒前
勤奋的下水道工人完成签到,获得积分10
27秒前
心灵美语兰完成签到 ,获得积分10
31秒前
yyy完成签到,获得积分10
32秒前
科研通AI5应助爱学习采纳,获得10
33秒前
淡水鱼完成签到 ,获得积分10
35秒前
热情的板栗完成签到,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340477
关于积分的说明 10300344
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677368
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491