核(代数)
核更平滑
航程(航空)
平滑的
变核密度估计
非参数统计
分布的核嵌入
简单(哲学)
计算机科学
计量经济学
核方法
数学
统计
机器学习
径向基函数核
工程类
组合数学
航空航天工程
哲学
认识论
支持向量机
出处
期刊:Ecology
[Wiley]
日期:1989-02-01
卷期号:70 (1): 164-168
被引量:4071
摘要
In this paper kernel methods for the nonparametric estimation of the utilization distribution from a random sample of locational observations made on an animal in its home range are described. They are of flexible form, thus can be used where simple parametric models are found to be inappropriate or difficult to specify. Two examples are given to illustrate the fixed and adaptive kernel approaches in data analysis and to compare the methods. Various choices for the smoothing parameter used in kernel methods are discussed. Since kernel methods give alternative approaches to the Anderson (1982) Fourier transform methods, some comparisons are made.
科研通智能强力驱动
Strongly Powered by AbleSci AI