机器人
计算机科学
稳健性(进化)
扭矩
四足动物
机器人运动
步行机器人
执行机构
机器人学
地面反作用力
地形
背景(考古学)
滑脱
模拟
控制理论(社会学)
接触力
运动学
人工智能
移动机器人
机器人控制
控制(管理)
工程类
地质学
物理
量子力学
古生物学
基因
热力学
生物化学
化学
生物
经典力学
结构工程
生态学
作者
Michele Focchi,Andrea Del Prete,Ioannis Havoutis,Roy Featherstone,Darwin G. Caldwell,Claudio Semini
出处
期刊:Autonomous Robots
[Springer Science+Business Media]
日期:2016-05-31
卷期号:41 (1): 259-272
被引量:186
标识
DOI:10.1007/s10514-016-9573-1
摘要
Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope ($$50^\circ $$50ź) V-shaped walls; an achievement that to the authors' best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain.
科研通智能强力驱动
Strongly Powered by AbleSci AI