亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Determination of Structure and Properties of Molecular Crystals from First Principles

分子间力 晶格能 三聚体 力场(虚构) Crystal(编程语言) 化学 密度泛函理论 从头算 二聚体 分子动力学 分子 格子(音乐) 能量最小化 晶体结构 晶体结构预测 计算化学 分子物理学 结晶学 物理 量子力学 计算机科学 程序设计语言 有机化学 声学
作者
Krzysztof Szalewicz
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:47 (11): 3266-3274 被引量:39
标识
DOI:10.1021/ar500275m
摘要

ConspectusUntil recently, it had been impossible to predict structures of molecular crystals just from the knowledge of the chemical formula for the constituent molecule(s). A solution of this problem has been achieved using intermolecular force fields computed from first principles. These fields were developed by calculating interaction energies of molecular dimers and trimers using an ab initio method called symmetry-adapted perturbation theory (SAPT) based on density-functional theory (DFT) description of monomers [SAPT(DFT)]. For clusters containing up to a dozen or so atoms, interaction energies computed using SAPT(DFT) are comparable in accuracy to the results of the best wave function-based methods, whereas the former approach can be applied to systems an order of magnitude larger than the latter. In fact, for monomers with a couple dozen atoms, SAPT(DFT) is about equally time-consuming as the supermolecular DFT approach. To develop a force field, SAPT(DFT) calculations are performed for a large number of dimer and possibly also trimer configurations (grid points in intermolecular coordinates), and the interaction energies are then fitted by analytic functions. The resulting force fields can be used to determine crystal structures and properties by applying them in molecular packing, lattice energy minimization, and molecular dynamics calculations. In this way, some of the first successful determinations of crystal structures were achieved from first principles, with crystal densities and lattice parameters agreeing with experimental values to within about 1%. Crystal properties obtained using similar procedures but empirical force fields fitted to crystal data have typical errors of several percent due to low sensitivity of empirical fits to interactions beyond those of the nearest neighbors. The first-principles approach has additional advantages over the empirical approach for notional crystals and cocrystals since empirical force fields can only be extrapolated to such cases.As an alternative to applying SAPT(DFT) in crystal structure calculations, one can use supermolecular DFT interaction energies combined with scaled dispersion energies computed from simple atom–atom functions, that is, use the so-called DFT+D approach. Whereas the standard DFT methods fail for intermolecular interactions, DFT+D performs reasonably well since the dispersion correction is used not only to provide the missing dispersion contribution but also to fix other deficiencies of DFT. The latter cancellation of errors is unphysical and can be avoided by applying the so-called dispersionless density functional, dlDF. In this case, the dispersion energies are added without any scaling. The dlDF+D method is also one of the best performing DFT+D methods.The SAPT(DFT)-based approach has been applied so far only to crystals with rigid monomers. It can be extended to partly flexible monomers, that is, to monomers with only a few internal coordinates allowed to vary. However, the costs will increase relative to rigid monomer cases since the number of grid points increases exponentially with the number of dimensions. One way around this problem is to construct force fields with approximate couplings between inter- and intramonomer degrees of freedom. Another way is to calculate interaction energies (and possibly forces) "on the fly", i.e., in each step of lattice energy minimization procedure. Such an approach would be prohibitively expensive if it replaced analytic force fields at all stages of the crystal predictions procedure, but it can be used to optimize a few dozen candidate structures determined by other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FLY完成签到,获得积分10
1秒前
孤央完成签到 ,获得积分10
2秒前
2秒前
所所应助兔子采纳,获得30
2秒前
3秒前
nono发布了新的文献求助10
3秒前
打打应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
5秒前
6秒前
susu完成签到,获得积分20
6秒前
ccczzz发布了新的文献求助10
7秒前
8秒前
粗暴的山腮完成签到 ,获得积分10
10秒前
咚咚完成签到 ,获得积分10
10秒前
11秒前
susu发布了新的文献求助30
12秒前
榴莲姑娘完成签到 ,获得积分10
12秒前
RylNG发布了新的文献求助10
15秒前
17秒前
自然的亦巧完成签到,获得积分10
17秒前
Running完成签到,获得积分20
18秒前
William_l_c完成签到,获得积分10
19秒前
深情安青应助RylNG采纳,获得10
22秒前
慧木发布了新的文献求助10
22秒前
完美世界应助nono采纳,获得10
22秒前
思源应助weixiaoyu采纳,获得10
25秒前
huenguyenvan完成签到,获得积分10
30秒前
ccczzz完成签到,获得积分20
32秒前
在水一方应助ccczzz采纳,获得10
36秒前
40秒前
CipherSage应助Running采纳,获得10
42秒前
vsvsgo发布了新的文献求助10
45秒前
45秒前
49秒前
JamesPei应助vsvsgo采纳,获得10
50秒前
RylNG完成签到,获得积分10
51秒前
lu发布了新的文献求助10
52秒前
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Schlieren and Shadowgraph Techniques:Visualizing Phenomena in Transparent Media 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5515554
求助须知:如何正确求助?哪些是违规求助? 4608975
关于积分的说明 14514200
捐赠科研通 4545448
什么是DOI,文献DOI怎么找? 2490550
邀请新用户注册赠送积分活动 1472489
关于科研通互助平台的介绍 1444181