Agency Selling or Reselling? Channel Structures in Electronic Retailing

业务 程式化事实 代理(哲学) 竞赛(生物学) 商业 频道(广播) 广告 营销 经济 电信 生态学 哲学 认识论 生物 宏观经济学 计算机科学
作者
Vibhanshu Abhishek,Kinshuk Jerath,Z. John Zhang
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:62 (8): 2259-2280 被引量:886
标识
DOI:10.1287/mnsc.2015.2230
摘要

In recent years, online retailers (also called e-tailers) have started allowing manufacturers direct access to their customers while charging a fee for providing this access, a format commonly referred to as agency selling. In this paper, we use a stylized theoretical model to answer a key question that e-tailers are facing: When should they use an agency selling format instead of using the more conventional reselling format? We find that agency selling is more efficient than reselling and leads to lower retail prices; however, the e-tailers end up giving control over retail prices to the manufacturer. Therefore, the reaction by the manufacturer, who makes electronic channel pricing decisions based on their impact on demand in the traditional channel (brick-and-mortar retailing), is an important factor for e-tailers to consider. We find that when sales in the electronic channel lead to a negative effect on demand in the traditional channel, e-tailers prefer agency selling, whereas when sales in the electronic channel lead to substantial stimulation of demand in the traditional channel, e-tailers prefer reselling. This preference is mediated by competition between e-tailers—as competition between them increases, e-tailers prefer to use agency selling. We also find that when e-tailers benefit from positive externalities from the sales of the focal product (such as additional profits from sales of associated products), retail prices may be lower under reselling than under agency selling, and the e-tailers prefer reselling under some conditions for which they would prefer agency selling without the positive externalities. This paper was accepted by Chris Forman, information systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
H_C完成签到,获得积分20
刚刚
阔达的无心完成签到,获得积分10
刚刚
Adore应助细心青烟采纳,获得20
刚刚
SciGPT应助细心青烟采纳,获得10
刚刚
豪豪给豪豪的求助进行了留言
刚刚
1秒前
不想干活应助zhang采纳,获得10
2秒前
2秒前
大个应助简单而复杂采纳,获得10
2秒前
H_C发布了新的文献求助50
3秒前
11111完成签到,获得积分10
3秒前
oxygen发布了新的文献求助10
3秒前
火星上的画板完成签到,获得积分10
3秒前
abc关闭了abc文献求助
4秒前
4秒前
完美世界应助lxd采纳,获得10
5秒前
完美世界应助洁净的灯泡采纳,获得10
5秒前
5秒前
丘比特应助酷炫的紫山采纳,获得10
5秒前
6秒前
Jeson完成签到,获得积分0
6秒前
zjq完成签到,获得积分10
6秒前
高兴白莲发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
英姑应助嘟嘟豆806采纳,获得30
8秒前
共享精神应助阔达的海采纳,获得20
8秒前
田一完成签到,获得积分10
8秒前
明理立果发布了新的文献求助10
8秒前
9秒前
科研通AI2S应助壮观的海豚采纳,获得10
9秒前
Yuanyuan发布了新的文献求助10
9秒前
科研通AI6应助Yang采纳,获得10
9秒前
拼搏山槐完成签到,获得积分10
9秒前
英姑应助花痴的绮采纳,获得10
10秒前
10秒前
10秒前
11秒前
相宜发布了新的文献求助30
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478351
求助须知:如何正确求助?哪些是违规求助? 3935846
关于积分的说明 12210724
捐赠科研通 3590566
什么是DOI,文献DOI怎么找? 1974377
邀请新用户注册赠送积分活动 1011678
科研通“疑难数据库(出版商)”最低求助积分说明 905165