Phenology-based sample generation for supervised crop type classification

动态时间归整 杠杆(统计) 样品(材料) 随机森林 相似性(几何) 计算机科学 机器学习 人工智能 数据挖掘 图像(数学) 色谱法 化学
作者
Mariana Belgiu,W. Bijker,Ovidiu Csillik,Alfred Stein
出处
期刊:International journal of applied earth observation and geoinformation 卷期号:95: 102264-102264 被引量:57
标识
DOI:10.1016/j.jag.2020.102264
摘要

Crop type mapping is relevant to a wide range of food security applications. Supervised classification methods commonly generate these data from satellite image time-series. Yet, their successful implementation is hindered by the lack of training samples. Solutions like transfer learning, development of temporal-spectral signatures of the target classes, re-utilization of existing inventories, or crowdsourcing initiatives are commonly applied to generate samples for thematically coarser classifications. These methods are rarely used for generating crop types samples. In this study, we leverage the phenology information of existing data inventories using Time-Weighted Dynamic Time Warping (TWDTW) to address the problem of automatic crop sample generation in two target areas. Resulting labeled samples are refined using proximity measures obtained from Random Forests (RF). Sentinel-2 time-series are used to obtain phenology information from two study areas. The proposed methodology achieved promising results for classes with a reduced inter-classes similarity such as sugar beets (user's accuracy, UA, of 98% and producer's accuracy, PA, of 100%) or grains (UA of 98% and PA of 90%). The crops with a high inter-classes similarity yielded less satisfactory results. Potatoes, for example, obtained a high PA of 95%, but a UA of only 36% because of the spectral-temporal similarity with maize. The methodology works well for areas with balanced crop samples. Yet, it favors prevalent classes in areas with imbalanced crops at the expense of a low accuracy for the minority crops. Despite these shortcomings, the proposed methodology offers a viable option to generate crop samples in regions with few ground labels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
2秒前
3秒前
4秒前
史淼荷发布了新的文献求助10
4秒前
5秒前
大猫完成签到,获得积分20
5秒前
郭666完成签到,获得积分10
5秒前
5秒前
小Q发布了新的文献求助10
5秒前
6秒前
AX完成签到 ,获得积分10
6秒前
reck发布了新的文献求助10
7秒前
7秒前
s686发布了新的文献求助20
8秒前
木之木发布了新的文献求助10
9秒前
天天快乐应助shenerqing采纳,获得10
9秒前
科研通AI2S应助wly采纳,获得10
9秒前
不能变太胖的小冉完成签到,获得积分20
10秒前
10秒前
snow_dragon完成签到 ,获得积分10
10秒前
purple发布了新的文献求助10
10秒前
yunxi发布了新的文献求助10
11秒前
唐唐完成签到,获得积分10
11秒前
快乐的胖子应助GT采纳,获得30
12秒前
时间了了发布了新的文献求助10
12秒前
13秒前
善学以致用应助reck采纳,获得10
13秒前
14秒前
14秒前
小王啵啵完成签到 ,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
17秒前
麦兜完成签到 ,获得积分10
18秒前
科研通AI2S应助探索采纳,获得10
18秒前
英姑应助luca采纳,获得10
19秒前
breeze完成签到,获得积分10
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 666
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Metals, Minerals, and Society 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4253501
求助须知:如何正确求助?哪些是违规求助? 3786552
关于积分的说明 11884767
捐赠科研通 3437118
什么是DOI,文献DOI怎么找? 1886338
邀请新用户注册赠送积分活动 937607
科研通“疑难数据库(出版商)”最低求助积分说明 843297