A High-Dimensional Choice Model for Online Retailing

业务 营销 广告
作者
Zhaohui Jiang,Jun Li,Dennis Zhang
出处
期刊:Social Science Research Network [Social Science Electronic Publishing]
被引量:9
标识
DOI:10.2139/ssrn.3687727
摘要

Online retailers are facing an increasing variety of product choices and diversified consumer decision journeys. To improve many operations decisions for online retailers, such as demand forecasting and price management, an important first step is to achieve a realistic understanding of the substitution patterns among a large number of products offered in the complex online environment. Although classic choice models offer an elegant framework for estimating substitution patterns among competing options, they have very limited applicability and performance in complex settings with many products. We provide a solution by developing a high-dimensional choice model that not only scales up more easily but also allows for flexible substitution patterns. We leverage consumer clickstream data, and combine econometric and machine learning (graphical lasso, in particular) methods to learn the substitution patterns among a large number of products. We show our method offers significantly better in- and out-of-sample demand forecasts as well as cross-product elasticities in various synthetic datasets and in a real-world empirical setting. For example, in both settings, our model reduces the out-of-sample mean absolute percentage error (MAPE) by approximately 30%--40% compared to classical models (e.g., the IID and the random coefficient Probit models). More importantly, our method can be used to enhance many business decisions such as assortment planning, inventory management and pricing decisions. In particular, we illustrate with a counter-factual pricing experiment that our model recommends better price points which increase total revenue by more than 5% compared to classical models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助海豚采纳,获得10
刚刚
研友_VZG7GZ应助15采纳,获得10
2秒前
4秒前
lily完成签到 ,获得积分10
4秒前
5秒前
fanzi完成签到 ,获得积分10
6秒前
6秒前
7秒前
上官老黑发布了新的文献求助10
9秒前
12秒前
15发布了新的文献求助10
13秒前
14秒前
14秒前
李爱国应助嘚嘚采纳,获得10
16秒前
fly完成签到,获得积分10
17秒前
18秒前
顺心曼香发布了新的文献求助10
19秒前
小唐发布了新的文献求助10
20秒前
20秒前
香菜皮蛋发布了新的文献求助10
20秒前
淡然巨人关注了科研通微信公众号
20秒前
lindsay完成签到,获得积分10
22秒前
乌鱼园发布了新的文献求助10
23秒前
25秒前
Hermit发布了新的文献求助10
26秒前
15完成签到,获得积分10
26秒前
29秒前
蓝冰完成签到,获得积分10
33秒前
智勇双全完成签到,获得积分10
33秒前
知了发布了新的文献求助10
34秒前
35秒前
明朗完成签到,获得积分10
35秒前
35秒前
Xiaopan完成签到 ,获得积分10
37秒前
上官若男应助科研通管家采纳,获得10
37秒前
Rye227应助科研通管家采纳,获得10
37秒前
香蕉觅云应助科研通管家采纳,获得10
37秒前
科研通AI5应助科研通管家采纳,获得10
37秒前
Akim应助科研通管家采纳,获得10
37秒前
冰魂应助科研通管家采纳,获得10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327234
关于积分的说明 10230111
捐赠科研通 3042093
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799335
科研通“疑难数据库(出版商)”最低求助积分说明 758774