Lithography tool improvement at productivity and performance with data analysis and machine learning

停工期 计算机科学 可靠性工程 故障排除 覆盖 可靠性(半导体) 系统工程 制造工程 工程类 操作系统 功率(物理) 物理 量子力学
作者
Takahiro Takiguchi,Yosuke Takarada,Tsuneari Fukada,Satoru Sugiyama,Keiji Yoshimura
标识
DOI:10.1117/12.2597215
摘要

Semiconductor manufacturing equipment must maintain high productivity and provide high-yield processing and Canon has developing high-reliability exposure tools that have demonstrated high-uptime and performance stability in production. As global emergency epidemic restrictions limit the travel of expert engineers, customer service becomes more challenging and alternative methods of support are being developed to help customers meet their production roadmaps. To help control performance, lithography tools have sophisticated logging systems that can monitor every movement in the tool and we studied a novel Artificial Intelligence system that utilizes big logging data to help improve exposure tool uptime, productivity and performance related to yield. One goal of our study is to minimize exposure tool downtime by monitoring and reacting to tool status. For this purpose we are applying machine learning to develop abnormality detection or prediction models with automated recovery procedures for each abnormality. We will report on Auto-Fault-Tree-Analysis (FTA) models being constructed to evaluate large volumes of design and trouble information to help minimize downtime. Another study goal is to improve lithography tool performance by monitoring and reacting to factors including overlay accuracy and CD uniformity that can strongly affect device yield. Outputs of this analysis include simulation and optimization of equipment performance, and virtual metrology. This paper reports on the system we are developing to help increase the uptime, productivity and imaging performance of Canon semiconductor lithography tools. The system is designed to monitor the operating state of lithography tools and apply automated recovery and optimization actions identified through machine learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
xuan完成签到,获得积分10
刚刚
tjfwg完成签到,获得积分10
1秒前
Jean完成签到,获得积分10
3秒前
星光熠熠完成签到 ,获得积分20
4秒前
小智完成签到 ,获得积分10
6秒前
6秒前
7秒前
8秒前
9秒前
9秒前
馨馨完成签到,获得积分20
10秒前
雪山飞龙发布了新的文献求助10
10秒前
kehan发布了新的文献求助10
11秒前
12秒前
小智关注了科研通微信公众号
12秒前
无花果应助激动的一手采纳,获得10
13秒前
dd99081完成签到,获得积分10
13秒前
谨慎初曼发布了新的文献求助10
13秒前
happy发布了新的文献求助10
15秒前
爱科研的小曹完成签到,获得积分10
15秒前
15秒前
心灵的守望完成签到,获得积分10
16秒前
16秒前
17秒前
八块腹肌完成签到 ,获得积分10
18秒前
19秒前
siestaMiao完成签到,获得积分10
19秒前
JamesPei应助谨慎初曼采纳,获得10
20秒前
whb发布了新的文献求助20
21秒前
21秒前
怕黑海冬发布了新的文献求助50
21秒前
fox2shj完成签到,获得积分10
22秒前
无问西东完成签到,获得积分10
23秒前
23秒前
George完成签到,获得积分10
25秒前
mm发布了新的文献求助30
25秒前
今后应助长情的月光采纳,获得10
25秒前
26秒前
科研通AI2S应助邱浩采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982367
求助须知:如何正确求助?哪些是违规求助? 3526007
关于积分的说明 11229870
捐赠科研通 3263850
什么是DOI,文献DOI怎么找? 1801703
邀请新用户注册赠送积分活动 879994
科研通“疑难数据库(出版商)”最低求助积分说明 807767