亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Evaluation and Prediction of Early Alzheimer’s Disease Using a Machine Learning-based Optimized Combination-Feature Set on Gray Matter Volume and Quantitative Susceptibility Mapping

支持向量机 内嗅皮质 人工智能 模式识别(心理学) 交叉验证 计算机科学 海马体 神经科学 心理学
作者
Hyug‐Gi Kim,Soonchan Park,Hak Young Rhee,Kyung Mi Lee,Chang‐Woo Ryu,Soo Y. Lee,Eui Jong Kim,Yi Wang,Geon‐Ho Jahng
出处
期刊:Current Alzheimer Research [Bentham Science Publishers]
卷期号:17 (5): 428-437 被引量:7
标识
DOI:10.2174/1567205017666200624204427
摘要

Background: Because Alzheimer’s Disease (AD) has very complicated pattern changes, it is difficult to evaluate it with a specific factor. Recently, novel machine learning methods have been applied to solve limitations. Objective: The objective of this study was to investigate the approach of classification and prediction methods using the Machine Learning (ML)-based Optimized Combination-Feature (OCF) set on Gray Matter Volume (GMV) and Quantitative Susceptibility Mapping (QSM) in the subjects of Cognitive Normal (CN) elderly, Amnestic Mild Cognitive Impairment (aMCI), and mild and moderate AD. Materials and Methods: 57 subjects were included: 19 CN, 19 aMCI, and 19 AD with GMV and QSM. Regions-of-Interest (ROIs) were defined at the well-known regions for rich iron contents and amyloid accumulation areas in the AD brain. To differentiate the three subject groups, the Support Vector Machine (SVM) with the three different kernels and with the OCF set was conducted with GMV and QSM values. To predict the aMCI stage, regression-based ML models were performed with the OCF set. The result of prediction was compared with the accuracy of clinical data. Results: In the group classification between CN and aMCI, the highest accuracy was shown using the combination of GMVs (hippocampus and entorhinal cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.94). In the group classification between aMCI and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.93). In the group classification between CN and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.99). To predict aMCI from CN, the exponential Gaussian process regression model with the OCF set using GMV and QSM data was shown the most similar result (RMSE = 0.371) to clinical data (RMSE = 0.319). Conclusion: The proposed OCF based ML approach with GMV and QSM was shown the effective performance of the subject group classification and prediction for aMCI stage. Therefore, it can be used as personalized analysis or diagnostic aid program for diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cassie发布了新的文献求助30
1秒前
non平行线发布了新的文献求助10
2秒前
顺利的尔芙完成签到,获得积分10
7秒前
12秒前
Lofee发布了新的文献求助10
17秒前
19秒前
19秒前
21秒前
non平行线发布了新的文献求助10
23秒前
37秒前
38秒前
田様应助甜美的烤鸡采纳,获得10
43秒前
量子星尘发布了新的文献求助10
48秒前
54秒前
甜美的烤鸡完成签到,获得积分10
55秒前
小不溜发布了新的文献求助10
1分钟前
1分钟前
1分钟前
荼蘼完成签到,获得积分20
1分钟前
yehata发布了新的文献求助10
1分钟前
善学以致用应助记录吐吐采纳,获得10
1分钟前
1分钟前
yehata完成签到,获得积分10
1分钟前
1分钟前
博雅发布了新的文献求助10
1分钟前
1分钟前
1分钟前
OnlyHarbour发布了新的文献求助10
1分钟前
记录吐吐发布了新的文献求助10
1分钟前
pearson应助等待的剑身采纳,获得10
1分钟前
1分钟前
chenjzhuc完成签到,获得积分10
1分钟前
1分钟前
xuanyu完成签到,获得积分10
1分钟前
kyt_vip发布了新的文献求助10
1分钟前
科研通AI5应助xuanyu采纳,获得30
1分钟前
1分钟前
友好德天完成签到 ,获得积分10
1分钟前
风起枫落完成签到 ,获得积分10
1分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5090749
求助须知:如何正确求助?哪些是违规求助? 4305359
关于积分的说明 13415590
捐赠科研通 4130936
什么是DOI,文献DOI怎么找? 2262782
邀请新用户注册赠送积分活动 1266648
关于科研通互助平台的介绍 1201524