Evaluation and Prediction of Early Alzheimer’s Disease Using a Machine Learning-based Optimized Combination-Feature Set on Gray Matter Volume and Quantitative Susceptibility Mapping

支持向量机 内嗅皮质 人工智能 模式识别(心理学) 交叉验证 计算机科学 海马体 神经科学 心理学
作者
Hyug‐Gi Kim,Soonchan Park,Hak Young Rhee,Kyung Mi Lee,Chang‐Woo Ryu,Soo Y. Lee,Eui Jong Kim,Yi Wang,Geon‐Ho Jahng
出处
期刊:Current Alzheimer Research [Bentham Science]
卷期号:17 (5): 428-437 被引量:7
标识
DOI:10.2174/1567205017666200624204427
摘要

Background: Because Alzheimer’s Disease (AD) has very complicated pattern changes, it is difficult to evaluate it with a specific factor. Recently, novel machine learning methods have been applied to solve limitations. Objective: The objective of this study was to investigate the approach of classification and prediction methods using the Machine Learning (ML)-based Optimized Combination-Feature (OCF) set on Gray Matter Volume (GMV) and Quantitative Susceptibility Mapping (QSM) in the subjects of Cognitive Normal (CN) elderly, Amnestic Mild Cognitive Impairment (aMCI), and mild and moderate AD. Materials and Methods: 57 subjects were included: 19 CN, 19 aMCI, and 19 AD with GMV and QSM. Regions-of-Interest (ROIs) were defined at the well-known regions for rich iron contents and amyloid accumulation areas in the AD brain. To differentiate the three subject groups, the Support Vector Machine (SVM) with the three different kernels and with the OCF set was conducted with GMV and QSM values. To predict the aMCI stage, regression-based ML models were performed with the OCF set. The result of prediction was compared with the accuracy of clinical data. Results: In the group classification between CN and aMCI, the highest accuracy was shown using the combination of GMVs (hippocampus and entorhinal cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.94). In the group classification between aMCI and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.93). In the group classification between CN and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.99). To predict aMCI from CN, the exponential Gaussian process regression model with the OCF set using GMV and QSM data was shown the most similar result (RMSE = 0.371) to clinical data (RMSE = 0.319). Conclusion: The proposed OCF based ML approach with GMV and QSM was shown the effective performance of the subject group classification and prediction for aMCI stage. Therefore, it can be used as personalized analysis or diagnostic aid program for diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
正己化人应助轻松的路灯采纳,获得10
刚刚
biubiu26发布了新的文献求助10
1秒前
小二郎应助Silvermonique采纳,获得20
1秒前
sci2025opt完成签到 ,获得积分10
2秒前
深情安青应助LEGEND采纳,获得10
2秒前
3秒前
mm完成签到 ,获得积分10
5秒前
童童发布了新的文献求助10
5秒前
是的是的我完成签到,获得积分10
5秒前
自信夜春完成签到,获得积分10
7秒前
李山鬼发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
11秒前
顾矜应助DOU采纳,获得10
11秒前
量子星尘发布了新的文献求助10
12秒前
12秒前
古惑仔发布了新的文献求助10
12秒前
李健的小迷弟应助QVQ采纳,获得10
12秒前
阿泡阿茶和阿壶完成签到,获得积分10
13秒前
缓慢秋蝶完成签到,获得积分10
14秒前
14秒前
14秒前
时尚的无颜完成签到,获得积分10
14秒前
科研通AI6应助mu采纳,获得10
15秒前
15秒前
海带先生完成签到,获得积分10
17秒前
17秒前
聪明蛋挞应助奋斗英姑采纳,获得30
17秒前
研友_LmeK4L完成签到,获得积分10
17秒前
18秒前
碎月发布了新的文献求助10
18秒前
18秒前
18秒前
黄浦江发布了新的文献求助10
19秒前
Wu完成签到,获得积分10
20秒前
羞涩的煎饼完成签到,获得积分10
22秒前
nic发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Lectures in probability theory and mathematical statistics - 3rd Edition 500
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5597235
求助须知:如何正确求助?哪些是违规求助? 4682446
关于积分的说明 14826453
捐赠科研通 4659873
什么是DOI,文献DOI怎么找? 2536467
邀请新用户注册赠送积分活动 1504178
关于科研通互助平台的介绍 1470139