Evaluation and Prediction of Early Alzheimer’s Disease Using a Machine Learning-based Optimized Combination-Feature Set on Gray Matter Volume and Quantitative Susceptibility Mapping

支持向量机 内嗅皮质 人工智能 模式识别(心理学) 交叉验证 计算机科学 海马体 神经科学 心理学
作者
Hyug‐Gi Kim,Soonchan Park,Hak Young Rhee,Kyung Mi Lee,Chang‐Woo Ryu,Soo Y. Lee,Eui Jong Kim,Yi Wang,Geon‐Ho Jahng
出处
期刊:Current Alzheimer Research [Bentham Science]
卷期号:17 (5): 428-437 被引量:7
标识
DOI:10.2174/1567205017666200624204427
摘要

Background: Because Alzheimer’s Disease (AD) has very complicated pattern changes, it is difficult to evaluate it with a specific factor. Recently, novel machine learning methods have been applied to solve limitations. Objective: The objective of this study was to investigate the approach of classification and prediction methods using the Machine Learning (ML)-based Optimized Combination-Feature (OCF) set on Gray Matter Volume (GMV) and Quantitative Susceptibility Mapping (QSM) in the subjects of Cognitive Normal (CN) elderly, Amnestic Mild Cognitive Impairment (aMCI), and mild and moderate AD. Materials and Methods: 57 subjects were included: 19 CN, 19 aMCI, and 19 AD with GMV and QSM. Regions-of-Interest (ROIs) were defined at the well-known regions for rich iron contents and amyloid accumulation areas in the AD brain. To differentiate the three subject groups, the Support Vector Machine (SVM) with the three different kernels and with the OCF set was conducted with GMV and QSM values. To predict the aMCI stage, regression-based ML models were performed with the OCF set. The result of prediction was compared with the accuracy of clinical data. Results: In the group classification between CN and aMCI, the highest accuracy was shown using the combination of GMVs (hippocampus and entorhinal cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.94). In the group classification between aMCI and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.93). In the group classification between CN and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.99). To predict aMCI from CN, the exponential Gaussian process regression model with the OCF set using GMV and QSM data was shown the most similar result (RMSE = 0.371) to clinical data (RMSE = 0.319). Conclusion: The proposed OCF based ML approach with GMV and QSM was shown the effective performance of the subject group classification and prediction for aMCI stage. Therefore, it can be used as personalized analysis or diagnostic aid program for diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骑着蚂蚁追大象完成签到,获得积分10
3秒前
轩辕书白完成签到,获得积分10
4秒前
JoaquinH完成签到,获得积分10
6秒前
张家辉是卧底完成签到 ,获得积分10
7秒前
少管我完成签到 ,获得积分10
8秒前
9秒前
子平完成签到 ,获得积分10
11秒前
Radish完成签到 ,获得积分10
13秒前
蝃蝀完成签到,获得积分10
13秒前
bzdqsm完成签到,获得积分10
15秒前
胜天半子完成签到 ,获得积分10
15秒前
梓沐发布了新的文献求助20
16秒前
阿托伐他汀完成签到 ,获得积分10
18秒前
流沙无言完成签到 ,获得积分10
18秒前
ANT完成签到 ,获得积分10
19秒前
21秒前
22秒前
KKLL6699完成签到,获得积分10
24秒前
可靠月亮完成签到,获得积分10
26秒前
28秒前
YC发布了新的文献求助10
28秒前
陈醋塔塔完成签到,获得积分10
29秒前
丰富的乐儿完成签到,获得积分10
29秒前
沉静的万天完成签到 ,获得积分10
35秒前
mito应助梓沐采纳,获得20
36秒前
炎魔之王拉格纳罗斯完成签到,获得积分10
36秒前
沉默洋葱完成签到,获得积分10
37秒前
TGU的小马同学完成签到 ,获得积分10
39秒前
向日葵完成签到 ,获得积分10
42秒前
徐勇完成签到 ,获得积分10
45秒前
JamesPei应助YC采纳,获得10
46秒前
MJMO完成签到,获得积分10
46秒前
SDNUDRUG完成签到,获得积分10
47秒前
51秒前
香樟遗完成签到 ,获得积分10
55秒前
innocent完成签到,获得积分10
55秒前
北风完成签到,获得积分10
56秒前
CJW完成签到,获得积分10
57秒前
Lenard Guma完成签到 ,获得积分10
58秒前
Michael_li完成签到,获得积分10
59秒前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052675
求助须知:如何正确求助?哪些是违规求助? 2709926
关于积分的说明 7418387
捐赠科研通 2354494
什么是DOI,文献DOI怎么找? 1246139
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921