Evaluation and Prediction of Early Alzheimer’s Disease Using a Machine Learning-based Optimized Combination-Feature Set on Gray Matter Volume and Quantitative Susceptibility Mapping

支持向量机 内嗅皮质 人工智能 模式识别(心理学) 交叉验证 计算机科学 海马体 神经科学 心理学
作者
Hyug‐Gi Kim,Soonchan Park,Hak Young Rhee,Kyung Mi Lee,Chang‐Woo Ryu,Soo Y. Lee,Eui Jong Kim,Yi Wang,Geon‐Ho Jahng
出处
期刊:Current Alzheimer Research [Bentham Science]
卷期号:17 (5): 428-437 被引量:7
标识
DOI:10.2174/1567205017666200624204427
摘要

Background: Because Alzheimer’s Disease (AD) has very complicated pattern changes, it is difficult to evaluate it with a specific factor. Recently, novel machine learning methods have been applied to solve limitations. Objective: The objective of this study was to investigate the approach of classification and prediction methods using the Machine Learning (ML)-based Optimized Combination-Feature (OCF) set on Gray Matter Volume (GMV) and Quantitative Susceptibility Mapping (QSM) in the subjects of Cognitive Normal (CN) elderly, Amnestic Mild Cognitive Impairment (aMCI), and mild and moderate AD. Materials and Methods: 57 subjects were included: 19 CN, 19 aMCI, and 19 AD with GMV and QSM. Regions-of-Interest (ROIs) were defined at the well-known regions for rich iron contents and amyloid accumulation areas in the AD brain. To differentiate the three subject groups, the Support Vector Machine (SVM) with the three different kernels and with the OCF set was conducted with GMV and QSM values. To predict the aMCI stage, regression-based ML models were performed with the OCF set. The result of prediction was compared with the accuracy of clinical data. Results: In the group classification between CN and aMCI, the highest accuracy was shown using the combination of GMVs (hippocampus and entorhinal cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.94). In the group classification between aMCI and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.93). In the group classification between CN and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.99). To predict aMCI from CN, the exponential Gaussian process regression model with the OCF set using GMV and QSM data was shown the most similar result (RMSE = 0.371) to clinical data (RMSE = 0.319). Conclusion: The proposed OCF based ML approach with GMV and QSM was shown the effective performance of the subject group classification and prediction for aMCI stage. Therefore, it can be used as personalized analysis or diagnostic aid program for diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Solarenergy完成签到,获得积分0
2秒前
健壮的白桃完成签到,获得积分10
3秒前
晚风完成签到,获得积分10
4秒前
4秒前
星辰大海应助健壮的翠安采纳,获得30
5秒前
顾矜应助认真的思枫采纳,获得10
5秒前
Sun1c7发布了新的文献求助10
6秒前
vvvg发布了新的文献求助30
6秒前
7秒前
鲜艳的芹发布了新的文献求助10
8秒前
无语的钢铁侠完成签到,获得积分10
11秒前
Hui_2023发布了新的文献求助30
11秒前
lvbowen发布了新的文献求助10
12秒前
wx完成签到,获得积分10
14秒前
chx2256120完成签到,获得积分10
14秒前
一一完成签到,获得积分20
14秒前
gzgljh完成签到,获得积分10
15秒前
17秒前
17秒前
吕亦寒完成签到,获得积分10
19秒前
believe完成签到,获得积分10
20秒前
谢佳霖完成签到,获得积分10
22秒前
吕亦寒发布了新的文献求助10
22秒前
yyisme完成签到,获得积分10
25秒前
雪时晴发布了新的文献求助10
25秒前
路漫漫其修远兮完成签到 ,获得积分10
26秒前
可爱的函函应助lvbowen采纳,获得10
26秒前
科研通AI6应助lvbowen采纳,获得10
26秒前
小蘑菇应助lvbowen采纳,获得10
27秒前
科研通AI6应助lvbowen采纳,获得10
27秒前
syt完成签到 ,获得积分10
27秒前
一一发布了新的文献求助10
30秒前
32秒前
33秒前
不安心情发布了新的文献求助10
36秒前
36秒前
阳光孤菱完成签到,获得积分10
39秒前
大模型应助俊逸书琴采纳,获得10
39秒前
40秒前
wwsybx完成签到 ,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5560110
求助须知:如何正确求助?哪些是违规求助? 4645276
关于积分的说明 14674677
捐赠科研通 4586381
什么是DOI,文献DOI怎么找? 2516410
邀请新用户注册赠送积分活动 1490066
关于科研通互助平台的介绍 1460866