Evaluation and Prediction of Early Alzheimer’s Disease Using a Machine Learning-based Optimized Combination-Feature Set on Gray Matter Volume and Quantitative Susceptibility Mapping

支持向量机 内嗅皮质 人工智能 模式识别(心理学) 交叉验证 计算机科学 海马体 神经科学 心理学
作者
Hyug‐Gi Kim,Soonchan Park,Hak Young Rhee,Kyung Mi Lee,Chang‐Woo Ryu,Soo Y. Lee,Eui Jong Kim,Yi Wang,Geon‐Ho Jahng
出处
期刊:Current Alzheimer Research [Bentham Science Publishers]
卷期号:17 (5): 428-437 被引量:7
标识
DOI:10.2174/1567205017666200624204427
摘要

Background: Because Alzheimer’s Disease (AD) has very complicated pattern changes, it is difficult to evaluate it with a specific factor. Recently, novel machine learning methods have been applied to solve limitations. Objective: The objective of this study was to investigate the approach of classification and prediction methods using the Machine Learning (ML)-based Optimized Combination-Feature (OCF) set on Gray Matter Volume (GMV) and Quantitative Susceptibility Mapping (QSM) in the subjects of Cognitive Normal (CN) elderly, Amnestic Mild Cognitive Impairment (aMCI), and mild and moderate AD. Materials and Methods: 57 subjects were included: 19 CN, 19 aMCI, and 19 AD with GMV and QSM. Regions-of-Interest (ROIs) were defined at the well-known regions for rich iron contents and amyloid accumulation areas in the AD brain. To differentiate the three subject groups, the Support Vector Machine (SVM) with the three different kernels and with the OCF set was conducted with GMV and QSM values. To predict the aMCI stage, regression-based ML models were performed with the OCF set. The result of prediction was compared with the accuracy of clinical data. Results: In the group classification between CN and aMCI, the highest accuracy was shown using the combination of GMVs (hippocampus and entorhinal cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.94). In the group classification between aMCI and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.93). In the group classification between CN and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.99). To predict aMCI from CN, the exponential Gaussian process regression model with the OCF set using GMV and QSM data was shown the most similar result (RMSE = 0.371) to clinical data (RMSE = 0.319). Conclusion: The proposed OCF based ML approach with GMV and QSM was shown the effective performance of the subject group classification and prediction for aMCI stage. Therefore, it can be used as personalized analysis or diagnostic aid program for diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
北北完成签到 ,获得积分10
1秒前
123发布了新的文献求助10
6秒前
YuLu完成签到 ,获得积分10
10秒前
qiancib202完成签到,获得积分10
10秒前
林安林安完成签到 ,获得积分10
13秒前
13秒前
echo完成签到 ,获得积分10
16秒前
普外科老白完成签到,获得积分10
17秒前
皮皮完成签到 ,获得积分10
17秒前
18秒前
hbpu230701完成签到,获得积分0
19秒前
小洋同学可能不在完成签到,获得积分10
25秒前
加油完成签到 ,获得积分10
26秒前
澍澍完成签到,获得积分10
26秒前
lxcy0612完成签到,获得积分10
28秒前
song完成签到,获得积分10
30秒前
轩辕德地完成签到,获得积分10
37秒前
Amon完成签到 ,获得积分10
37秒前
nianshu完成签到 ,获得积分10
37秒前
巴巴拉拉巴拉完成签到 ,获得积分10
39秒前
刚子完成签到 ,获得积分10
39秒前
娇娇大王完成签到,获得积分10
39秒前
lyric完成签到,获得积分10
41秒前
Jeffery426完成签到,获得积分10
45秒前
陈晶完成签到 ,获得积分10
47秒前
幽默的太阳完成签到 ,获得积分10
47秒前
gxmu6322完成签到,获得积分10
52秒前
Ayn完成签到 ,获得积分10
54秒前
饱满一手完成签到 ,获得积分10
57秒前
代扁扁完成签到 ,获得积分10
57秒前
juliar完成签到 ,获得积分10
1分钟前
你才是小哭包完成签到 ,获得积分10
1分钟前
微雨若,,完成签到 ,获得积分10
1分钟前
luan完成签到,获得积分10
1分钟前
优秀的媚颜完成签到 ,获得积分10
1分钟前
tzjz_zrz完成签到,获得积分10
1分钟前
woshiwuziq完成签到 ,获得积分10
1分钟前
小花生完成签到 ,获得积分10
1分钟前
cq_2完成签到,获得积分10
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3949990
求助须知:如何正确求助?哪些是违规求助? 3495297
关于积分的说明 11076114
捐赠科研通 3225837
什么是DOI,文献DOI怎么找? 1783312
邀请新用户注册赠送积分活动 867589
科研通“疑难数据库(出版商)”最低求助积分说明 800839