Evaluation and Prediction of Early Alzheimer’s Disease Using a Machine Learning-based Optimized Combination-Feature Set on Gray Matter Volume and Quantitative Susceptibility Mapping

支持向量机 内嗅皮质 人工智能 模式识别(心理学) 交叉验证 计算机科学 海马体 神经科学 心理学
作者
Hyug‐Gi Kim,Soonchan Park,Hak Young Rhee,Kyung Mi Lee,Chang‐Woo Ryu,Soo Y. Lee,Eui Jong Kim,Yi Wang,Geon‐Ho Jahng
出处
期刊:Current Alzheimer Research [Bentham Science Publishers]
卷期号:17 (5): 428-437 被引量:7
标识
DOI:10.2174/1567205017666200624204427
摘要

Background: Because Alzheimer’s Disease (AD) has very complicated pattern changes, it is difficult to evaluate it with a specific factor. Recently, novel machine learning methods have been applied to solve limitations. Objective: The objective of this study was to investigate the approach of classification and prediction methods using the Machine Learning (ML)-based Optimized Combination-Feature (OCF) set on Gray Matter Volume (GMV) and Quantitative Susceptibility Mapping (QSM) in the subjects of Cognitive Normal (CN) elderly, Amnestic Mild Cognitive Impairment (aMCI), and mild and moderate AD. Materials and Methods: 57 subjects were included: 19 CN, 19 aMCI, and 19 AD with GMV and QSM. Regions-of-Interest (ROIs) were defined at the well-known regions for rich iron contents and amyloid accumulation areas in the AD brain. To differentiate the three subject groups, the Support Vector Machine (SVM) with the three different kernels and with the OCF set was conducted with GMV and QSM values. To predict the aMCI stage, regression-based ML models were performed with the OCF set. The result of prediction was compared with the accuracy of clinical data. Results: In the group classification between CN and aMCI, the highest accuracy was shown using the combination of GMVs (hippocampus and entorhinal cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.94). In the group classification between aMCI and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.93). In the group classification between CN and AD, the highest accuracy was shown using the combination of GMVs (amygdala, entorhinal cortex, and posterior cingulate cortex) and QSMs (hippocampus and pulvinar) data using the 2nd SVM classifier (AUC = 0.99). To predict aMCI from CN, the exponential Gaussian process regression model with the OCF set using GMV and QSM data was shown the most similar result (RMSE = 0.371) to clinical data (RMSE = 0.319). Conclusion: The proposed OCF based ML approach with GMV and QSM was shown the effective performance of the subject group classification and prediction for aMCI stage. Therefore, it can be used as personalized analysis or diagnostic aid program for diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
爆米花应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
大个应助科研通管家采纳,获得10
6秒前
Ava应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
orixero应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Pendragon完成签到,获得积分10
8秒前
ding应助安安采纳,获得10
9秒前
mm完成签到,获得积分10
11秒前
TangWL完成签到 ,获得积分10
12秒前
成就乐珍完成签到 ,获得积分10
12秒前
烟花应助在下废物采纳,获得10
13秒前
曾泓跃完成签到 ,获得积分10
16秒前
16秒前
今后应助曾经的听云采纳,获得10
18秒前
fdj3121完成签到,获得积分10
20秒前
科研通AI5应助风一样的我采纳,获得10
23秒前
24秒前
24秒前
die关注了科研通微信公众号
25秒前
在下废物发布了新的文献求助10
29秒前
29秒前
CipherSage应助weiwei1991采纳,获得10
30秒前
赵李艺完成签到 ,获得积分10
31秒前
31秒前
恩恩完成签到,获得积分10
34秒前
35秒前
宾周发布了新的文献求助10
35秒前
muqianyaowanan完成签到,获得积分10
36秒前
ifhaceoiv发布了新的文献求助10
36秒前
科研通AI2S应助wodeqiche2007采纳,获得30
36秒前
39秒前
赫鲁晓夫发布了新的文献求助10
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Individualized positive end-expiratory pressure in laparoscopic surgery: a randomized controlled trial 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761774
求助须知:如何正确求助?哪些是违规求助? 3305540
关于积分的说明 10134658
捐赠科研通 3019564
什么是DOI,文献DOI怎么找? 1658226
邀请新用户注册赠送积分活动 791989
科研通“疑难数据库(出版商)”最低求助积分说明 754751