Microstructure formation and mechanical properties of ODS steels built by laser additive manufacturing of nanoparticle coated iron-chromium powders

材料科学 微观结构 纳米颗粒 冶金 扫描电子显微镜 复合材料 纳米技术
作者
Carlos Doñate‐Buendía,Philipp Kürnsteiner,Felix Stern,Markus Benjamin Wilms,René Streubel,Ihsan Murat Kuşoğlu,Jochen Tenkamp,Enrico Bruder,Norbert Pirch,Stephan Barcikowski,Karsten Durst,Johannes Henrich Schleifenbaum,Frank Walther,Baptiste Gault,Bilal Gökce
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:206: 116566-116566 被引量:104
标识
DOI:10.1016/j.actamat.2020.116566
摘要

Oxide dispersion strengthened (ODS) steels are known for their enhanced mechanical performance at high temperatures or under radiation exposure. Their microstructure depends on the manufacturing process, from the nanoparticle addition to the base steel powder, to the processing of the nanoparticle enriched powder. The optimization and control of the processing steps still represent a challenge to establish a clear methodology for the additive manufacturing of ODS steels. Here, we evaluate the microstructure, nanoparticle evolution, and mechanical properties of ODS steels prepared by dielectrophoretic controlled adsorption of 0.08 wt% laser-synthesized yttrium oxide (Y2O3) on an iron-chromium ferritic steel powder (PM2000). The influence of the ODS steel fabrication technique is studied for two standard additive manufacturing techniques, directed energy deposition (DED) and laser powder bed fusion (LPBF). The compressive strength of the ODS steels at 600 °C is increased by 21% and 29% for the DED and LPBF samples, respectively, compared to the DED and LPBF steels manufactured without Y2O3 nanoparticle addition. The Martens hardness is enhanced by 9% for the LPBF ODS steel while no significant change is observed in the DED ODS steel. The microstructure and nanoparticle composition and distribution are evaluated by electron backscatter diffraction, scanning electron microscopy–energy-dispersive X-ray spectroscopy, and atom probe tomography, to compare the microstructural features of DED and LPBF manufactured parts. Smaller grain size and more homogeneous distribution with lower agglomeration of Y-O nanoparticles in the LPBF sample are found to be key factors for enhanced mechanical response at 600 °C. The enhanced mechanical properties of the LPBF-processed sample and the more homogeneous nanoparticle dispersion can be linked to results obtained by finite element methods simulations of the melt pool that show two orders of magnitude faster cooling rates for LPBF than for DED. Therefore, this work presents and validates a complete laser-based methodology for the preparation and processing of an ODS steel, proving the modification of the microstructure and enhancement of the high-temperature strength of the as-built parts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘤鸣完成签到,获得积分10
1秒前
2秒前
hmf1995完成签到 ,获得积分10
2秒前
4秒前
Serena发布了新的文献求助10
5秒前
JMchiefEditor完成签到,获得积分10
5秒前
刘媛完成签到,获得积分20
6秒前
苏苏苏发布了新的文献求助10
8秒前
gabee完成签到 ,获得积分10
8秒前
8秒前
田様应助ZW采纳,获得10
8秒前
打打应助menxiaomei采纳,获得30
10秒前
刘媛发布了新的文献求助10
11秒前
11秒前
ShiRz发布了新的文献求助10
11秒前
14秒前
zkkz完成签到,获得积分10
16秒前
zy发布了新的文献求助10
20秒前
21秒前
科研通AI5应助苏苏苏采纳,获得10
24秒前
26秒前
westernline完成签到,获得积分10
26秒前
28秒前
zyf完成签到,获得积分10
28秒前
28秒前
30秒前
冰魂应助花开富贵采纳,获得10
31秒前
wanci应助清风明月采纳,获得10
32秒前
CS发布了新的文献求助10
33秒前
ZW发布了新的文献求助10
34秒前
科研通AI5应助Serena采纳,获得10
35秒前
wwqc完成签到,获得积分0
36秒前
37秒前
在水一方应助尊敬的幻桃采纳,获得10
38秒前
39秒前
xiaoxiao汉堡完成签到,获得积分10
40秒前
科研通AI5应助科研通管家采纳,获得30
42秒前
科研通AI2S应助科研通管家采纳,获得10
42秒前
科研通AI5应助科研通管家采纳,获得10
42秒前
华仔应助科研通管家采纳,获得20
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976