亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Augmenting vascular disease diagnosis by vasculature-aware unsupervised learning

疾病 计算机科学 医学 重症监护医学 内科学
作者
Yong Wang,Mengqi Ji,Shengwei Jiang,Xukang Wang,Jiamin Wu,Feng Duan,Jingtao Fan,Laiqiang Huang,Shaohua Ma,Lu Fang,Qionghai Dai
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:2 (6): 337-346 被引量:18
标识
DOI:10.1038/s42256-020-0188-z
摘要

Vascular disease is one of the leading causes of death and threatens human health worldwide. Imaging examination of vascular pathology with reduced invasiveness is challenging due to the intrinsic vasculature complexity and non-uniform scattering from bio-tissues. Here, we report VasNet, a vasculature-aware unsupervised learning algorithm that augments pathovascular recognition from small sets of unlabelled fluorescence and digital subtraction angiography images. VasNet adopts a multi-scale fusion strategy with a domain adversarial neural network loss function that induces biased pattern reconstruction by strengthening features relevant to the retinal vasculature reference while weakening irrelevant features. VasNet delivers the outputs ‘Structure + X’ (where X refers to multi-dimensional features such as blood flows, the distinguishment of blood dilation and its suspicious counterparts, and the dependence of new pattern emergence on disease progression). Therefore, explainable imaging output from VasNet and other algorithm extensions holds the promise to augment medical diagnosis, as it improves performance while reducing the cost of human expertise, equipment and time consumption. Vascular abnormalities are challenging for diagnostic imaging due to the complexity of vasculature and the non-uniform scattering from biological tissues. The authors present an unsupervised learning algorithm for vascular feature recognition from small sets of biomedical images acquired from different modalities. They demonstrate the utility of their diagnostic approach on vascular images of thrombosis, internal bleeding and colitis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
与枫发布了新的文献求助10
1秒前
杨wx发布了新的文献求助10
2秒前
Orange应助孙伟健采纳,获得10
2秒前
qpp完成签到,获得积分10
7秒前
Aliya完成签到 ,获得积分10
13秒前
jyy应助科研通管家采纳,获得10
17秒前
jyy应助科研通管家采纳,获得10
17秒前
桐桐应助孙伟健采纳,获得10
17秒前
逗小豆完成签到 ,获得积分10
28秒前
大个应助孙伟健采纳,获得10
29秒前
35秒前
大模型应助孙伟健采纳,获得10
46秒前
52秒前
55秒前
浮浮世世发布了新的文献求助10
59秒前
上官若男应助孙伟健采纳,获得10
1分钟前
上官若男应助孙伟健采纳,获得10
1分钟前
1分钟前
clhoxvpze完成签到 ,获得积分10
1分钟前
烟花应助孙伟健采纳,获得10
1分钟前
1分钟前
SciGPT应助孙伟健采纳,获得10
1分钟前
打打应助孙伟健采纳,获得10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
孙伟健发布了新的文献求助10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968433
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167056
捐赠科研通 3248604
什么是DOI,文献DOI怎么找? 1794280
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629