Deep learning for motor imagery EEG-based classification: A review

计算机科学 深度学习 人工智能 卷积神经网络 脑电图 机器学习 过程(计算) 运动表象 脑-机接口 领域(数学) 预处理器 突出 人工神经网络 精神科 操作系统 纯数学 数学 心理学
作者
Ali Al-Saegh,Shefa A. Dawwd,Jassim M. Abdul-Jabbar
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:63: 102172-102172 被引量:265
标识
DOI:10.1016/j.bspc.2020.102172
摘要

The availability of large and varied Electroencephalogram (EEG) datasets, rapidly advances and inventions in deep learning techniques, and highly powerful and diversified computing systems have all permitted to easily analyzing those datasets and discovering vital information within. However, the classification process of EEG signals and discovering vital information should be robust, automatic, and with high accuracy. Motor Imagery (MI) EEG has attracted us due to its significant applications in daily life. This paper attempts to achieve those goals throughout a systematic review of the state-of-the-art studies within this field of research. The process began by intensely surfing the well-known specialized digital libraries and, as a result, 40 related papers were gathered. The papers were scrutinized upon multiple noteworthy technical issues, among them deep neural network architecture, input formulation, number of MI EEG tasks, and frequency range of interest. Deep neural networks build robust and automated systems for the classification of MI EEG recordings by exploiting the whole input data throughout learning salient features. Specifically, convolutional neural networks (CNN) and hybrid-CNN (h-CNN) are the dominant architectures with high performance in comparison to public datasets with other types of architectures. The MI related datasets, input formulation, frequency ranges, and preprocessing and regularization methods were also reviewed. This review gives the required preliminaries in developing MI EEG-based BCI systems. The review process of the published articles in the last five years aims to help in choosing the appropriate deep neural network architecture and other hyperparameters for developing those systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FF完成签到 ,获得积分10
2秒前
zq1992nl完成签到,获得积分10
6秒前
开放芝麻关注了科研通微信公众号
7秒前
JamesPei应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
10秒前
汉堡包应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
夕诙应助科研通管家采纳,获得10
11秒前
李健应助科研通管家采纳,获得10
11秒前
11秒前
英姑应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
大模型应助科研通管家采纳,获得10
11秒前
orixero应助机智楼房采纳,获得10
12秒前
淡定草丛完成签到 ,获得积分10
12秒前
深情未来完成签到,获得积分10
15秒前
16秒前
TengDa发布了新的文献求助10
20秒前
Xxxuan发布了新的文献求助10
25秒前
mia005完成签到,获得积分10
29秒前
likey完成签到,获得积分10
29秒前
Silverexile完成签到,获得积分10
31秒前
和谐板栗完成签到 ,获得积分10
32秒前
vivian完成签到,获得积分10
34秒前
二二完成签到 ,获得积分10
35秒前
yeah完成签到 ,获得积分10
35秒前
36秒前
林子完成签到,获得积分10
39秒前
39秒前
lone623完成签到 ,获得积分10
40秒前
香蕉擎发布了新的文献求助10
40秒前
41秒前
搜集达人应助尉迟苑博采纳,获得10
42秒前
kukudou2发布了新的文献求助10
45秒前
51秒前
52秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777369
求助须知:如何正确求助?哪些是违规求助? 3322759
关于积分的说明 10211549
捐赠科研通 3038120
什么是DOI,文献DOI怎么找? 1667117
邀请新用户注册赠送积分活动 797971
科研通“疑难数据库(出版商)”最低求助积分说明 758103