反推
控制理论(社会学)
非线性系统
人工神经网络
有界函数
自适应控制
计算机科学
国家(计算机科学)
径向基函数
理论(学习稳定性)
功能(生物学)
控制(管理)
数学
人工智能
算法
机器学习
生物
进化生物学
量子力学
物理
数学分析
作者
Yuehui Ji,Hailiang Zhou,Qun Zong
摘要
Summary An adaptive neural network (NN) command filtered backstepping control is proposed for the pure‐feedback system subjected to time‐varying output/stated constraints. By introducing a one‐to‐one nonlinear mapping, the obstacle caused by full stated constraints is conquered. The adaptive control law is constructed by command filtered backstepping technology and radial basis function NNs, where only one learning parameter needs to be updated online. The stability analysis via nonlinear small‐gain theorem shows that all the signals in closed‐loop system are semiglobal uniformly ultimately bounded. The simulation examples demonstrate the effectiveness of the proposed control scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI