假电容
材料科学
双层
氧化还原
电化学
纳米技术
电化学储能
拉曼光谱
执行机构
价(化学)
化学工程
超级电容器
膜
冶金
电极
物理化学
工程类
物理
光学
化学
电气工程
生物
量子力学
遗传学
作者
Lingyang Liu,Lijun Su,Yulan Lü,Qingnuan Zhang,Li Zhang,Shulai Lei,Siqi Shi,Mikhael D. Levi,Xingbin Yan
标识
DOI:10.1002/adfm.201806778
摘要
Abstract Pseudocapacitance‐induced electrochemical actuators (EC‐actuators) have attracted great attention in robots and artificial intelligence technologies. Despite major efforts to design such EC‐actuators, a molecular‐level understanding of the deformation mechanism is still lacking. Here, a reversible deformation of a freestanding MnO 2 /Ni bilayer film is demonstrated and in situ electrochemical atomic force microscopy, in situ Raman spectroscopy, and density functional theory simulation are used to study the origin of the deformation. The results show that the electrochemical actuation of the MnO 2 /Ni film is highly related with the redox pseudocapacitive behavior of MnO 2 layer. Valence state variation of Mn element, shortening and lengthening of MnO bond, and insertion and extraction of Na + ions, which all result from the redox pseudocapacitance of MnO 2 during charging and discharging, eventually lead to the reversible contraction and expansion of MnO 2 morphology. Such action counters with the nonactive Ni layer, finally inducing the reversible deformation of the MnO 2 /Ni bilayer film. It is believed that the study can provide useful guidance to design better EC‐actuators in the future.
科研通智能强力驱动
Strongly Powered by AbleSci AI