Effect of self-monitoring through experience sampling on emotion differentiation in depression.

萧条(经济学) 焦虑 心情
作者
Raf L A Widdershoven,Marieke Wichers,Peter Kuppens,Jessica A. Hartmann,Claudia Menne-Lothmann,Claudia J. P. Simons,Jojanneke A. Bastiaansen
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:244: 71-77 被引量:17
标识
DOI:10.1016/j.jad.2018.10.092
摘要

BACKGROUND: Major depressive disorder has been linked to an inability to differentiate between negative emotions. The current study investigates whether emotion differentiation improves when individuals with major depressive disorder are required to report on specific emotions multiple times a day through the experience sampling method (ESM) - a structured self-report diary technique. METHODS: Seventy-nine patients diagnosed with major depressive disorder participated in this study, of whom 55 used ESM for 6 weeks (3 days a week, 10 times a day). Changes from baseline to post assessment in positive and negative emotion differentiation were compared between the participants who did and those who did not use ESM. RESULTS: Engaging in ESM related to an improvement in both positive and negative emotion differentiation, but only the latter reached statistical significance. The relationship between the number of ESM measurements (dose) and emotion differentiation change (response) was not significant. LIMITATIONS: The sample size for the dose-response analysis was relatively small (N = 55). It is unknown whether emotion differentiation improvements generalize beyond the emotions (N = 12) we probed in this study. Other factors could also have contributed to the change (e.g., meetings with the researchers). CONCLUSIONS: The present study suggests that patients with depression using ESM for 3 days a week for 6 weeks can improve their negative emotion differentiation. Future studies should assess after what period of ESM changes in emotion differentiation become apparent, and whether these changes are persistent and relate to actual improvement in depressive symptoms.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
whl完成签到 ,获得积分10
刚刚
Zcy发布了新的文献求助10
2秒前
思源应助SSS采纳,获得10
3秒前
yohoo发布了新的文献求助10
3秒前
和谐智宸完成签到 ,获得积分10
5秒前
居居要读博完成签到 ,获得积分10
5秒前
5秒前
May发布了新的文献求助10
6秒前
搜集达人应助mmol采纳,获得10
8秒前
9秒前
11秒前
mm完成签到,获得积分10
12秒前
12秒前
Myownway完成签到,获得积分10
13秒前
13秒前
梁寒发布了新的文献求助10
13秒前
14秒前
虚圆希发布了新的文献求助20
14秒前
小小枫叶轻轻而过完成签到,获得积分10
16秒前
16秒前
zzzrrr完成签到,获得积分10
16秒前
时之沙完成签到,获得积分10
17秒前
ff发布了新的文献求助10
17秒前
17秒前
蓝天发布了新的文献求助10
18秒前
咻咻发布了新的文献求助10
19秒前
zmnzmnzmn发布了新的文献求助10
19秒前
长江完成签到,获得积分10
20秒前
想睡觉的小笼包完成签到 ,获得积分10
21秒前
大个应助zzzrrr采纳,获得10
22秒前
长江发布了新的文献求助10
23秒前
温柔的枫发布了新的文献求助10
24秒前
栗栗发布了新的文献求助50
26秒前
30秒前
31秒前
婷123发布了新的文献求助10
31秒前
krislan完成签到,获得积分10
32秒前
Peter_Zhu发布了新的文献求助10
34秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
Functional Analysis 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5872909
求助须知:如何正确求助?哪些是违规求助? 6493392
关于积分的说明 15670147
捐赠科研通 4990296
什么是DOI,文献DOI怎么找? 2690194
邀请新用户注册赠送积分活动 1632729
关于科研通互助平台的介绍 1590605