Status and perspectives of crystalline silicon photovoltaics in research and industry

光伏 光伏系统 工程物理 晶体硅 硅谷 材料科学 纳米技术 电气工程 光电子学 业务 工程类 财务 创业
作者
Christophe Ballif,Franz‐Josef Haug,Mathieu Boccard,Pierre Verlinden,Giso Hahn
出处
期刊:Nature Reviews Materials [Nature Portfolio]
卷期号:7 (8): 597-616 被引量:418
标识
DOI:10.1038/s41578-022-00423-2
摘要

Crystalline silicon (c-Si) photovoltaics has long been considered energy intensive and costly. Over the past decades, spectacular improvements along the manufacturing chain have made c-Si a low-cost source of electricity that can no longer be ignored. Over 125 GW of c-Si modules have been installed in 2020, 95% of the overall photovoltaic (PV) market, and over 700 GW has been cumulatively installed. There are some strong indications that c-Si photovoltaics could become the most important world electricity source by 2040–2050. In this Review, we survey the key changes related to materials and industrial processing of silicon PV components. At the wafer level, a strong reduction in polysilicon cost and the general implementation of diamond wire sawing has reduced the cost of monocrystalline wafers. In parallel, the concentration of impurities and electronic defects in the various types of wafers has been reduced, allowing for high efficiency in industrial devices. Improved cleanliness in production lines, increased tool automation and improved production technology and cell architectures all helped to increase the efficiency of mainstream modules. Efficiency gains at the cell level were accompanied by an increase in wafer size and by the introduction of advanced assembly techniques. These improvements have allowed a reduction of cell-to-module efficiency losses and will accelerate the yearly efficiency gain of mainstream modules. To conclude, we discuss what it will take for other PV technologies to compete with silicon on the mass market. Crystalline silicon solar cells are today’s main photovoltaic technology, enabling the production of electricity with minimal carbon emissions and at an unprecedented low cost. This Review discusses the recent evolution of this technology, the present status of research and industrial development, and the near-future perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
iris发布了新的文献求助10
1秒前
824完成签到,获得积分10
2秒前
桐桐应助熊二采纳,获得10
3秒前
顾瑶发布了新的文献求助10
6秒前
i7发布了新的文献求助10
7秒前
HN洪发布了新的文献求助10
8秒前
popooo完成签到,获得积分10
8秒前
yundong完成签到,获得积分10
8秒前
刘智豪完成签到,获得积分10
9秒前
秦可可完成签到,获得积分20
9秒前
ch完成签到,获得积分10
9秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
上官若男应助科研通管家采纳,获得10
12秒前
zhounini1989应助科研通管家采纳,获得10
12秒前
领导范儿应助科研通管家采纳,获得30
12秒前
SciGPT应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得150
12秒前
FashionBoy应助科研通管家采纳,获得10
13秒前
汉堡包应助哈基米采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
称心曼安应助科研通管家采纳,获得10
13秒前
zcl应助科研通管家采纳,获得150
13秒前
上官若男应助科研通管家采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
ding应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
wanci应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
DijiaXu应助科研通管家采纳,获得10
13秒前
13秒前
浮游应助大水牛姐姐采纳,获得10
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
称心曼安应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得30
14秒前
田様应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
深情安青应助科研通管家采纳,获得10
14秒前
脑洞疼应助科研通管家采纳,获得30
14秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5131875
求助须知:如何正确求助?哪些是违规求助? 4333485
关于积分的说明 13500924
捐赠科研通 4170518
什么是DOI,文献DOI怎么找? 2286388
邀请新用户注册赠送积分活动 1287217
关于科研通互助平台的介绍 1228262