清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Multi-node load forecasting based on multi-task learning with modal feature extraction

计算机科学 节点(物理) 平均绝对百分比误差 情态动词 特征(语言学) 数据挖掘 任务(项目管理) 卷积神经网络 人工智能 人工神经网络 实时计算 工程类 高分子化学 管理 化学 经济 哲学 结构工程 语言学
作者
Mao Tan,Chenglin Hu,Jie Chen,Ling Wang,Zhengmao Li
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:112: 104856-104856 被引量:49
标识
DOI:10.1016/j.engappai.2022.104856
摘要

Accurate multi-node load forecasting is the key to the safe, reliable, and economical operation of the power system. However, the dynamic nature of load and the coupling nature of networks are difficult to extract, making consistent and accurate forecasting of node load rather difficult. In this regard, this paper proposes a soft sharing multi-task deep learning method for multi-node load forecasting in the power system. It has the following aspects: (1) Considering the coupling characteristics of the node network, a multi-modal feature module, based on the inception strategy and gated temporal convolutional network (GTCN), is firstly designed to explore the coupling features implied in the node load data. (2) A novel multi-objective neural network model is proposed to achieve simultaneous prediction of multi-node load by integrating the multi-modal feature module and gated recurrent unit (GRU). For sharing the learning information of sub-networks, this paper uses the soft sharing mechanism to capture load features, which can better optimize the prediction task for each node load simultaneously. Load data from the New Zealand distribution network and AEMO are used to compare the proposed model's performance in various scenarios using regression metrics such as mean absolute percentage error (MAPE), Weighted Mean Accuracy (WMA), root mean squared logarithmic error (RMSLE), and Diebold–Mariano (DM). The simulation results show that the proposed method can explore the spatial–temporal coupling characteristics in multi-node load data. Compared with existing state-of-the-art multi-node load prediction methods, our proposed method's MAPE decrease 17.04% and 3.92% in Non-aggregation and Aggregation situations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
11秒前
52秒前
1分钟前
滕皓轩完成签到 ,获得积分20
1分钟前
科研通AI6应助宝宝爱洗脚采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
Zoe发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助20
2分钟前
Zoe完成签到,获得积分10
2分钟前
2分钟前
2分钟前
虚幻念寒完成签到 ,获得积分10
3分钟前
卢莹完成签到,获得积分10
3分钟前
木乙完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
脑洞疼应助Jonathan采纳,获得10
5分钟前
5分钟前
随心所欲完成签到 ,获得积分10
5分钟前
5分钟前
汪汪淬冰冰完成签到,获得积分10
5分钟前
SimonShaw完成签到,获得积分10
5分钟前
5分钟前
5分钟前
5分钟前
5分钟前
6分钟前
天玄发布了新的文献求助10
6分钟前
李健的小迷弟应助敏敏9813采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482500
求助须知:如何正确求助?哪些是违规求助? 4583268
关于积分的说明 14389135
捐赠科研通 4512388
什么是DOI,文献DOI怎么找? 2472939
邀请新用户注册赠送积分活动 1459119
关于科研通互助平台的介绍 1432605