亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identification of the proximate geographical origin of wolfberries by two-dimensional correlation spectroscopy combined with deep learning

线性判别分析 人工智能 高光谱成像 支持向量机 模式识别(心理学) 波长 数学 化学 计算机科学 生物系统 物理 光学 生物
作者
Fujia Dong,Jie Hao,Ruiming Luo,Zhifeng Zhang,Songlei Wang,Kangning Wu,Mengqi Liu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107027-107027 被引量:52
标识
DOI:10.1016/j.compag.2022.107027
摘要

In this study, two-dimensional correlation spectroscopy (2D-COS) of near-infrared hyperspectral images combined with convolutional neural networks (CNN) was developed to identify the origin of wolfberries for the first time. 2D-COS was adopted to identify characteristic wavelengths and resolve the change orders of corresponding chemical bonds. Competitive adaptive reweighed sampling (CARS), iteratively retaining information variables (IRIV) and interval variable iterative space shrinking analysis (iVISSA) methods were used to select characteristic wavelengths. Linear discriminant analysis (LDA), partial least squares discriminant analysis (PLS-DA), support vector machine (SVM) and CNN classification models of the original spectra and characteristic wavelengths were established. Wolfberry texture information was extracted by the grey-level co-occurrence matrix (GLCM) method, and fused with optimal characteristic wavelengths to optimize the identification results of the models. The results showed that the sequence of changes in the correlation spectra caused by fluctuation in geographical origins in sequence was 1556 nm, 1437 nm, 1058 nm, 1368 nm. The stretching vibration of the NH bonds and CN bonds (1556 nm) in the amide II bands preceded the bending vibration of the NH bonds and CN bonds (1437 nm) in the amide III bands. Stretching vibration of the COH bonds (1058 nm) preceded double-frequency absorption bands of the CH bonds (1368 nm). For the original spectral dataset, the 2D-COS-CNN model performed the best, with the calibration set and prediction set accuracies of 100% and 95.29%, respectively. For the characteristic wavelength dataset, the 2D-COS-iVISSA-CNN model exhibited the best accuracy, with the calibration set and prediction set accuracies of 100% and 96.67%, respectively. Using the optimized fusion dataset, the CNN discrimination model showed the best results, with the calibration and prediction set accuracies of 100% and 97.71%, respectively. 2D-COS combined with deep learning algorithm can effectively distinguish the origin of wolfberries and provide crucial technical support for the development of wolfberry industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思源应助令水白采纳,获得10
刚刚
26秒前
令水白发布了新的文献求助10
30秒前
32秒前
NexusExplorer应助科研通管家采纳,获得10
43秒前
华仔应助科研通管家采纳,获得10
44秒前
YifanWang应助科研通管家采纳,获得20
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
YifanWang应助科研通管家采纳,获得20
44秒前
YifanWang应助科研通管家采纳,获得20
44秒前
NexusExplorer应助科研通管家采纳,获得10
44秒前
1分钟前
钟山发布了新的文献求助10
1分钟前
痴情的寒云完成签到 ,获得积分10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
YifanWang应助科研通管家采纳,获得20
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
3分钟前
钟山发布了新的文献求助10
3分钟前
bkagyin应助钟山采纳,获得10
3分钟前
杪夏二八完成签到 ,获得积分10
3分钟前
sino-ft完成签到,获得积分10
4分钟前
任性白卉完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
4分钟前
白云发布了新的文献求助10
4分钟前
5分钟前
5分钟前
钟山发布了新的文献求助10
5分钟前
edisonyan完成签到 ,获得积分10
5分钟前
方沅完成签到,获得积分10
5分钟前
所所应助钟山采纳,获得10
6分钟前
镜小小静完成签到,获得积分10
6分钟前
YifanWang应助科研通管家采纳,获得10
6分钟前
CodeCraft应助科研通管家采纳,获得10
6分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4086095
求助须知:如何正确求助?哪些是违规求助? 3625110
关于积分的说明 11497202
捐赠科研通 3338895
什么是DOI,文献DOI怎么找? 1835547
邀请新用户注册赠送积分活动 903909
科研通“疑难数据库(出版商)”最低求助积分说明 822005