高光谱成像
黄曲霉毒素
规范化(社会学)
偏最小二乘回归
生物系统
红外显微镜
显微镜
材料科学
化学
光学
人工智能
数学
计算机科学
食品科学
生物
物理
统计
社会学
人类学
作者
Haicheng Zhang,Beibei Jia,Yao Lu,Seung-Chul Yoon,Xinzhi Ni,Hong Zhuang,Xiaohuan Guo,Wenxin Le,Wei Wang
出处
期刊:Sensors
[MDPI AG]
日期:2022-06-27
卷期号:22 (13): 4864-4864
被引量:12
摘要
To study the dynamic changes of nutrient consumption and aflatoxin B1 (AFB1) accumulation in peanut kernels with fungal colonization, macro hyperspectral imaging technology combined with microscopic imaging was investigated. First, regression models to predict AFB1 contents from hyperspectral data ranging from 1000 to 2500 nm were developed and the results were compared before and after data normalization with Box-Cox transformation. The results indicated that the second-order derivative with a support vector regression (SVR) model using competitive adaptive reweighted sampling (CARS) achieved the best performance, with RC2 = 0.95 and RV2 = 0.93. Second, time-lapse microscopic images and spectroscopic data were captured and analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), and synchrotron radiation-Fourier transform infrared (SR-FTIR) microspectroscopy. The time-lapse data revealed the temporal patterns of nutrient loss and aflatoxin accumulation in peanut kernels. The combination of macro and micro imaging technologies proved to be an effective way to detect the interaction mechanism of toxigenic fungus infecting peanuts and to predict the accumulation of AFB1 quantitatively.
科研通智能强力驱动
Strongly Powered by AbleSci AI