RepBFL: Reputation Based Blockchain-Enabled Federated Learning Framework for Data Sharing in Internet of Vehicles

计算机科学 声誉 可靠性(半导体) 数据共享 块链 互联网 过程(计算) 分布式计算 计算机网络 计算机安全 万维网 操作系统 替代医学 功率(物理) 社会学 病理 物理 医学 量子力学 社会科学
作者
Haoyu Chen,Naiyue Chen,He Liu,Honglei Zhang,Jiabo Xu,Huaping Chen,Yi-Dong Li
出处
期刊:Lecture Notes in Computer Science 卷期号:: 536-547
标识
DOI:10.1007/978-3-030-96772-7_50
摘要

AbstractInternet of Vehicles (IoV) enables the integration of smart vehicles with Internet and collaborative analysis from shared data among vehicles. Machine learning technologies show significant advantages and efficiency for data analysis in IoV. However, the user data could be sensitive in nature, and the reliability and efficiency of sharing these data is hard to guarantee. Moreover, due to the intermittent and unreliable communications of various distributed vehicles, the traditional machine learning algorithms are not suitable for heterogeneous IoV network. In this paper, we propose a novel reputation mechanism framework that integrates the IoV with blockchain and federated learning named RepBFL. In this framework, blockchain is used to protect the shared data between the vehicles. The Road Side Units (RSU) select the high reputation vehicular nodes to share their data for federated learning. To enhance the security and reliability of the data sharing process, we develop the reputation calculated mechanism to evaluate the reliability of all vehicles in IoV. The proposed framework is feasible for the large heterogeneous vehicular networks and perform the collaborative data analysis in distributed vehicles. The experimental results show that the proposed approach can improve the data sharing efficiency. Furthermore, the reputation mechanism is able to deal with malicious behaviors effectively.KeywordsData sharingInternet of VehiclesReputation mechanismFederated learningBlockchain
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤南霜发布了新的文献求助10
刚刚
宋丽娟完成签到,获得积分10
刚刚
1秒前
黎明发布了新的文献求助10
1秒前
1秒前
LHT发布了新的文献求助10
1秒前
Debiao发布了新的文献求助10
2秒前
沈尔云完成签到,获得积分10
2秒前
3秒前
研友_VZG7GZ应助bofu采纳,获得10
3秒前
希望天下0贩的0应助ywzwszl采纳,获得10
5秒前
7秒前
无花果应助郭医生采纳,获得10
8秒前
pcr163应助盒子采纳,获得50
8秒前
科目三应助桢桢树采纳,获得10
9秒前
LHT完成签到,获得积分20
10秒前
BakedMax完成签到,获得积分10
11秒前
断章完成签到 ,获得积分10
13秒前
奋斗的橘子完成签到,获得积分10
14秒前
SireTD发布了新的文献求助10
14秒前
科研通AI5应助舒心的大有采纳,获得30
15秒前
15秒前
研友_VZG7GZ应助bofu采纳,获得10
15秒前
堪尔风完成签到 ,获得积分10
16秒前
17秒前
科研通AI5应助奋斗的橘子采纳,获得10
17秒前
Isabelee完成签到,获得积分10
17秒前
岚12完成签到 ,获得积分10
19秒前
20秒前
仁爱裘完成签到,获得积分10
20秒前
21秒前
Isabelee发布了新的文献求助10
22秒前
chichenglin发布了新的文献求助10
23秒前
领导范儿应助FF采纳,获得10
24秒前
24秒前
24秒前
晚湖发布了新的文献求助10
25秒前
汉域人发布了新的文献求助10
26秒前
JamesPei应助bofu采纳,获得10
26秒前
pluto应助超级月光采纳,获得20
27秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777