A Variable Granularity Search-Based Multiobjective Feature Selection Algorithm for High-Dimensional Data Classification

粒度 特征选择 特征(语言学) 进化算法 算法 计算机科学 搜索算法 数学 代表(政治) 变量(数学) 人工智能 数据挖掘 模式识别(心理学) 数学分析 法学 哲学 操作系统 政治 语言学 政治学
作者
Fan Cheng,Junjie Cui,Qijun Wang,Lei Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 266-280 被引量:38
标识
DOI:10.1109/tevc.2022.3160458
摘要

Evolutionary algorithms (EAs) have shown their competitiveness in solving the problem of feature selection (FS). However, in most of the existing EA-based FS methods, one bit in the individual only represents one feature, which means with the number of features increasing, the search space of these methods increases exponentially and makes them not suitable for the data classification with high dimensions. To tackle the issue, in this article, a variable granularity search-based multiobjective EA, termed as VGS-MOEA, is proposed for high-dimensional FS, where one bit in the individual representation denotes a group of features and results in the search space reducing greatly. To be specific, at the beginning, the search granularity of VGS-MOEA is coarse (a bit denotes a great number of features), which helps the proposed algorithm detect the potentially good feature subsets quickly. As the evolution continues, the search granularity is refined gradually, where a bit denotes a smaller number of features until it only represents one feature. With this decomposition of granularity, a more refined search is performed and leads to the VGS-MOEA obtaining feature subsets with higher quality. Experimental results on 12 high-dimensional data sets with different characteristics have shown that in comparison with the state of the arts, the proposed VGS-MOEA has demonstrated its superiority in terms of the classification accuracy, the number of selected features, and the running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
Ext完成签到,获得积分10
5秒前
研友_8Raw2Z发布了新的文献求助10
5秒前
6秒前
bkagyin应助Ari_Kun采纳,获得10
6秒前
6秒前
好饭无人拼完成签到,获得积分10
7秒前
刘存鮡溪完成签到,获得积分10
8秒前
情怀应助天真小蚂蚁采纳,获得10
8秒前
9秒前
冷傲的南珍完成签到,获得积分10
10秒前
xjcy应助庚辰梦秋采纳,获得10
10秒前
Ext发布了新的文献求助10
10秒前
无花果应助林加雄采纳,获得10
12秒前
老张发布了新的文献求助10
14秒前
大个应助123采纳,获得10
15秒前
阿颦完成签到,获得积分10
16秒前
16秒前
17秒前
Meyako应助可靠雅青采纳,获得10
17秒前
天真小蚂蚁完成签到,获得积分10
18秒前
19秒前
22秒前
花薇Liv完成签到,获得积分10
25秒前
mashu完成签到,获得积分10
27秒前
科研通AI5应助liuhll采纳,获得30
27秒前
Maestro_S应助自然鱼采纳,获得10
28秒前
30秒前
怀旧完成签到,获得积分10
30秒前
Meyako应助zhovy采纳,获得20
30秒前
31秒前
刘明生发布了新的文献求助10
31秒前
33秒前
旺仔完成签到,获得积分10
34秒前
852应助忽忽采纳,获得10
35秒前
Ari_Kun发布了新的文献求助10
35秒前
36秒前
搜集达人应助李玉玲采纳,获得10
36秒前
苹果发布了新的文献求助10
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Environmental Health: Foundations for Public Health 1st 1500
Voyage au bout de la révolution: de Pékin à Sochaux 700
ICDD求助cif文件 500
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Secrets of Successful Product Launches 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4338548
求助须知:如何正确求助?哪些是违规求助? 3847766
关于积分的说明 12016941
捐赠科研通 3488922
什么是DOI,文献DOI怎么找? 1914818
邀请新用户注册赠送积分活动 957736
科研通“疑难数据库(出版商)”最低求助积分说明 858118