已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Variable Granularity Search-Based Multiobjective Feature Selection Algorithm for High-Dimensional Data Classification

粒度 特征选择 特征(语言学) 进化算法 算法 计算机科学 搜索算法 数学 代表(政治) 变量(数学) 人工智能 数据挖掘 模式识别(心理学) 数学分析 法学 哲学 操作系统 政治 语言学 政治学
作者
Fan Cheng,Junjie Cui,Qijun Wang,Lei Zhang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:27 (2): 266-280 被引量:38
标识
DOI:10.1109/tevc.2022.3160458
摘要

Evolutionary algorithms (EAs) have shown their competitiveness in solving the problem of feature selection (FS). However, in most of the existing EA-based FS methods, one bit in the individual only represents one feature, which means with the number of features increasing, the search space of these methods increases exponentially and makes them not suitable for the data classification with high dimensions. To tackle the issue, in this article, a variable granularity search-based multiobjective EA, termed as VGS-MOEA, is proposed for high-dimensional FS, where one bit in the individual representation denotes a group of features and results in the search space reducing greatly. To be specific, at the beginning, the search granularity of VGS-MOEA is coarse (a bit denotes a great number of features), which helps the proposed algorithm detect the potentially good feature subsets quickly. As the evolution continues, the search granularity is refined gradually, where a bit denotes a smaller number of features until it only represents one feature. With this decomposition of granularity, a more refined search is performed and leads to the VGS-MOEA obtaining feature subsets with higher quality. Experimental results on 12 high-dimensional data sets with different characteristics have shown that in comparison with the state of the arts, the proposed VGS-MOEA has demonstrated its superiority in terms of the classification accuracy, the number of selected features, and the running time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助Tia采纳,获得10
1秒前
江小白完成签到,获得积分0
2秒前
磊少完成签到 ,获得积分10
3秒前
11秒前
王者归来完成签到,获得积分10
12秒前
zy完成签到,获得积分10
12秒前
Muniira发布了新的文献求助10
17秒前
今后应助风华正茂采纳,获得30
18秒前
凡可可发布了新的文献求助10
20秒前
24秒前
26秒前
英姑应助VDC采纳,获得10
27秒前
jiaobu发布了新的文献求助10
30秒前
魏立翔发布了新的文献求助10
31秒前
风华正茂完成签到,获得积分20
31秒前
魏立翔完成签到,获得积分10
40秒前
NexusExplorer应助拼搏流沙采纳,获得30
48秒前
Muniira完成签到,获得积分10
54秒前
甜甜的以筠完成签到 ,获得积分10
54秒前
55秒前
56秒前
58秒前
拼搏流沙发布了新的文献求助30
1分钟前
沿途有你完成签到 ,获得积分10
1分钟前
liujx发布了新的文献求助10
1分钟前
闪闪蜜粉完成签到 ,获得积分10
1分钟前
从容成危完成签到 ,获得积分10
1分钟前
SPUwangshunfeng完成签到,获得积分10
1分钟前
1分钟前
彭语梦发布了新的文献求助10
1分钟前
M3L2完成签到,获得积分10
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
酷波er应助科研通管家采纳,获得10
1分钟前
1分钟前
piaopiao2021发布了新的文献求助10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792399
求助须知:如何正确求助?哪些是违规求助? 3336687
关于积分的说明 10281839
捐赠科研通 3053411
什么是DOI,文献DOI怎么找? 1675608
邀请新用户注册赠送积分活动 803571
科研通“疑难数据库(出版商)”最低求助积分说明 761457