The Impact of User Personality Traits on Word of Mouth: Text-Mining Social Media Platforms

外向与内向 口头传述的 人格 通信源 社会化媒体 心理学 杠杆(统计) 五大性格特征 相似性(几何) 成对比较 广告 社会心理学 计算机科学 人工智能 万维网 业务 发展心理学 图像(数学) 电信
作者
Panagiotis Adamopoulos,Anindya Ghose,Vilma Todri
出处
期刊:Information Systems Research [Institute for Operations Research and the Management Sciences]
卷期号:29 (3): 612-640 被引量:174
标识
DOI:10.1287/isre.2017.0768
摘要

Word of mouth (WOM) plays an increasingly important role in shaping consumers’ behavior and preferences. In this paper, we examine whether latent personality traits of online users accentuate or attenuate the effectiveness of WOM in social media platforms. To answer this question, we leverage machine-learning methods in combination with econometric techniques utilizing a novel quasi-experiment. Our analysis yields two main results. First, there is a positive and statistically significant effect of the level of personality similarity between two social media users on the likelihood of a subsequent purchase from a recipient of a WOM message after exposure to the WOM message of the sender. In particular, exposure to WOM messages from similar users in terms of personality, rather than dissimilar users, increases the likelihood of a postpurchase by 47.58%. Second, there are statistically significant effects of specific pairwise combinations of personality characteristics of senders and recipients of WOM messages on the effectiveness of WOM. For instance, introverted users are responsive to WOM, in contrast to extroverted users. Besides this, agreeable, conscientious, and open social media users are more effective disseminators of WOM. In addition, WOM originating from users with low levels of emotional range affects similar users, whereas for high levels of emotional range, increased similarity usually has the opposite effect. The examined effects are also of significant economic importance, as, for instance, a WOM message from an extrovert user to an introvert peer increases the likelihood of a subsequent purchase by 71.28%. Our findings are robust to several alternative methods and specifications, such as controlling for latent user homophily and network structure roles based on deep-learning models. By extending the characteristics that have been theorized to affect the effectiveness of WOM from the observable to the latent space, tapping into users’ latent personality characteristics, and illustrating how companies can leverage the abundance of unstructured data in social media, our paper provides actionable insights regarding the future potential of social media advertising and advanced microtargeting based on big data and deep learning. The online appendix is available at https://doi.org/10.1287/isre.2017.0768 .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Singularity应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Orange应助科研通管家采纳,获得10
1秒前
今后应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
卷卷应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
852应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
2秒前
卷卷应助科研通管家采纳,获得10
3秒前
Zx_1993应助科研通管家采纳,获得10
3秒前
秋刀鱼完成签到,获得积分10
3秒前
3秒前
烟花应助科研通管家采纳,获得10
3秒前
3秒前
马女士发布了新的文献求助10
3秒前
3秒前
4秒前
无情的薯片应助多乐多滋采纳,获得10
4秒前
5秒前
陈廷艳关注了科研通微信公众号
5秒前
有趣的银发布了新的文献求助10
5秒前
6秒前
高兴冰双完成签到,获得积分10
6秒前
6秒前
幽默元容发布了新的文献求助10
6秒前
6秒前
科目三应助冬1采纳,获得10
7秒前
7秒前
8秒前
确幸发布了新的文献求助10
8秒前
wmtttttt完成签到,获得积分10
9秒前
梓沐发布了新的文献求助10
10秒前
铁路网125发布了新的文献求助10
10秒前
12发布了新的文献求助10
10秒前
高分求助中
How Maoism Was Made: Reconstructing China, 1949-1965 1200
Quantum reference frames : from quantum information to spacetime 888
줄기세포 생물학 800
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4387890
求助须知:如何正确求助?哪些是违规求助? 3879646
关于积分的说明 12084250
捐赠科研通 3523212
什么是DOI,文献DOI怎么找? 1933533
邀请新用户注册赠送积分活动 974449
科研通“疑难数据库(出版商)”最低求助积分说明 872619