Attaining ultrahigh thermoelectric performance of direction-solidified bulk n-type Bi2Te2.4Se0.6 via its liquid state treatment

材料科学 热电效应 热导率 热电材料 功勋 塞贝克系数 电阻率和电导率 制作 凝聚态物理 复合材料 光电子学 热力学 合金 病理 工程类 替代医学 物理 电气工程 医学
作者
Bin Zhu,Zhongyue Huang,Xiaoyu Wang,Yuan Yu,Lei Yang,Na Gao,Zhi‐Gang Chen,Fang‐Qiu Zu
出处
期刊:Nano Energy [Elsevier BV]
卷期号:42: 8-16 被引量:77
标识
DOI:10.1016/j.nanoen.2017.10.034
摘要

Bi2Te3-based alloys are the best thermoelectric materials near room temperature and Bi2(TeSe)3 alloys are their typical n-type ones. However, the dimensionless figure of merit ZT of the bulk Bi2(TeSe)3 is normally less than 1.0 despite various delicate and time-consuming preparations associated with complex post-treatments. Here, via liquid state manipulation (LSM), we obtained a high ZT for bulk n-type Bi2Te2.4Se0.6 ingot direction-solidified with high temperature-gradient at a suitable growth rate. With the maximum ZT = 1.22 at 477 K, its average value (1.09) between 300 and 575 K is the highest among those of all the bulk Bi2(TeSe)3 fabricated so far. Specifically, with proper structure texturing, LSM obviously raises the Seebeck coefficient due to the increased effective mass, with almost unaltered electrical conductivity. Moreover, as growth rate decreases, the enhanced texturing boosts the electrical conductivity, but raises the thermal conductivity along the growth direction. More significantly, at the same direction growth condition, LSM can increase nanoscale particles, dislocations and atomic-scale lattice distortions, resulting in substantially reduced lattice thermal conductivity. Consequently, via LSM and suitable texturing, the bulk n-type Bi2Te2.4Se0.6 with outstanding ZT is directly obtained without complex post-treatments. This work provides a novel strategy for optimizing performance of thermoelectric materials with the merit of easy large-scale fabrication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈哈发布了新的文献求助10
刚刚
none完成签到,获得积分20
1秒前
3秒前
追逐的疯完成签到,获得积分10
3秒前
LL发布了新的文献求助10
4秒前
6秒前
郭宇发布了新的文献求助10
7秒前
慕青应助哈哈采纳,获得10
9秒前
CipherSage应助1111111111111采纳,获得10
10秒前
Serena发布了新的文献求助10
11秒前
善学以致用应助mama采纳,获得30
11秒前
花开富贵完成签到,获得积分20
12秒前
18秒前
19秒前
小杨完成签到 ,获得积分10
20秒前
平常元灵完成签到,获得积分10
21秒前
23秒前
小白加油完成签到 ,获得积分10
24秒前
25秒前
26秒前
Rw发布了新的文献求助10
26秒前
28秒前
30秒前
mama发布了新的文献求助30
30秒前
李铛铛发布了新的文献求助10
33秒前
潘果果完成签到,获得积分10
33秒前
karcorl发布了新的文献求助10
34秒前
文献看不懂应助zone采纳,获得10
34秒前
35秒前
Rw完成签到,获得积分20
36秒前
38秒前
38秒前
小蘑菇应助科研通管家采纳,获得10
39秒前
科研通AI5应助科研通管家采纳,获得10
39秒前
orixero应助科研通管家采纳,获得10
39秒前
思源应助科研通管家采纳,获得30
39秒前
赘婿应助科研通管家采纳,获得30
39秒前
隐形曼青应助科研通管家采纳,获得10
39秒前
香蕉觅云应助科研通管家采纳,获得10
39秒前
英俊的铭应助科研通管家采纳,获得30
40秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776802
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209363
捐赠科研通 3037491
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976